收藏 分享(赏)

《函数的奇偶性》课件8(新人教b版必修1).ppt

上传人:无敌 文档编号:1355809 上传时间:2018-07-02 格式:PPT 页数:14 大小:287.50KB
下载 相关 举报
《函数的奇偶性》课件8(新人教b版必修1).ppt_第1页
第1页 / 共14页
《函数的奇偶性》课件8(新人教b版必修1).ppt_第2页
第2页 / 共14页
《函数的奇偶性》课件8(新人教b版必修1).ppt_第3页
第3页 / 共14页
《函数的奇偶性》课件8(新人教b版必修1).ppt_第4页
第4页 / 共14页
《函数的奇偶性》课件8(新人教b版必修1).ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、要点疑点考点 课 前 热 身 能力思维方法 延伸拓展误 解 分 析,第4课时 函数的奇偶性,要点疑点考点,(1)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数. (2)如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数 如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性,1.函数的奇偶性,一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数,2.具有奇偶性

2、的函数图象特点,(2)利用定理,借助函数的图象判定,3.函数奇偶性的判定方法,(1)根据定义判定,首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,再判定f(-x)=f(x)或f(-x)=-f(x). 有时判定f(-x)=f(x)比较困难,可考虑判定f(-x)f(x)=0或判定f(x)/f(-x)=1,返回,(3)性质法判定 在定义域的公共部分内两奇函数之积(商)为偶函数;两偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(注意取商时分母不为零); 偶函数在区间(a,b)上递增(减),则在区间(-b,-a)上递减(增);奇函数在区间(a,b)与(-b,-a)上

3、的增减性相同.,课 前 热 身,1.已知函数f(x)=ax2+bx+c(2a-3x1)是偶函数,则a_,b_,c_2.设f(x)(xR)是以3为周期的奇函数,且f(1)1,f(2)=a,则( ) (A)a2 (B)a-2 (C)a1 (D)a-1 3.已知奇函数f(x)在x0时的表达式为f(x)=2x-1/2,则当x-1/4时,有( ) (A)f(x)0 (B)f(x)0 (C)f(x)+f(-x)0 (D)f(x)+f(-x)0,1,0,R,D,B,4.函数 的奇偶性是( )(A)奇函数 (B)偶函数(C)既是奇函数又是偶函数 (D)非奇非偶 5.已知y=f(x-1)是偶函数,则y=f(x)

4、的图象关于( ) A.直线x+1=0对称 B.直线x-1=0对称 C.直线x-1/2=0对称 D.y轴对称,D,A,返回,能力思维方法,1.判断下列函数的奇偶性:,【解题回顾】本题还可利用f(-x)+f(x)=0求解较简便,【解题回顾】本题应先化简f(x),再判断f(x)的奇偶性,若直接判断f(x)的奇偶性,即 f(x)为偶函数,这样就遗漏f(x)也是奇函数,【解题回顾】判断函数的奇偶性时,应首先注意其定义域是否关于原点对称.,2.(1)设函数f(x)的定义域关于原点对称,判断下列函数的奇偶性: F(x)=f(x)+f(-x)/2;G(x)=f(x)-f(-x)/2; (2)试将函数y=2x表

5、示为一个奇函数与一个偶函数的和.,【解题回顾】本题的结论揭示了这样一个事实:任意一个定义在关于原点对称的区间上的函数,总可以表示成一个奇函数与一个偶函数的和.,【解题回顾】本题应注意充分挖掘已知条件.即将-x代x得到关于f(x)和g(x)的二元一次方程组.,3.设f(x)与g(x)分别为奇函数和偶函数,若f(x)-g(x)=(1/2)x,比较f(1)、g(0)、g(-2)的大小.,4.已知 (1)判断f(x)的奇偶性;(2)求证f(x)0,【解题回顾】(1)判断 的奇偶性要比直接判断f(x)的奇偶性要简洁;(2)因为f(x)是偶函数,所以求证f(x)0的关键是证当x0时,f(x)0,变题1:已知g(x)为奇函数,且 ,判断f(x)的奇偶性,变题2 已知函数 是偶函数,试求a的值.,返回,延伸拓展,【解题回顾】数学解题的过程就是充分利用已知条件实施由条件向结论的转化过程.当条件不能直接推出结论时就要想方设法创造使用条件的氛围,采用逐步逼近的手法达到解题目的.,5.设函数f(x)的定义域关于原点对称,且满足()()存在正常数a,使f(a)=1求证:(1)f(x)是奇函数; (2)f(x)是周期函数,并且有一个周期为4a,返回,1判断函数是否具有奇偶性首先要看函数的定义域是否关于原点对称即函数定义域关于原点对称是函数具有奇偶性的必要条件,误解分析,返回,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报