1、2.4函数与方程,2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法二分法,1.了解函数零点的概念,并会求简单函数的零点.2.掌握一元二次方程根的存在性定理及会判断一元二次方程根的个数的方法.3.了解二分法的定义及其原理.4.了解函数的零点与方程根的联系,能根据具体函数的图象,借助计算器用二分法求相应方程的近似解.,1,2,3,4,1.函数的零点(1)概念.一般地,如果函数y=f(x)在实数处的值等于零,即f()=0,则叫做这个函数的零点.(2)意义.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.,1,2,3,4,名师点拨1.并不是每一个函数都有零
2、点.例如,函数都没有零点.当函数有零点时,可能不止一个.例如,函数y=x2-9有两个零点.2.函数零点的求法主要有两种:(1)代数法:求f(x)的零点,就是求方程f(x)=0的根;(2)几何法:求f(x)的零点,就是求f(x)图象与x轴交点的横坐标.,1,2,3,4,【做一做1-1】 函数f(x)=2x+6的零点是()A.(0,6)B.(-3,0)C.3D.-3解析:令f(x)=2x+6=0,解得x=-3,故所求零点是-3.答案:D【做一做1-2】 下列函数中存在零点的是()C.f(x)=-x2D.f(x)=4解析:在C选项中,令f(x)=-x2=0,解得x=0,故f(x)=-x2存在零点,其
3、余选项中f(x)=0均无解,不存在零点.答案:C,1,2,3,4,2.二次函数的零点(1)二次函数y=ax2+bx+c(a0)的零点的个数.当0时,方程ax2+bx+c=0有两个不相等的实数根,二次函数的图象与x轴有两个交点,二次函数有两个零点;当=0时,方程ax2+bx+c=0有两个相等的实数根(重根),二次函数的图象与x轴有一个交点,二次函数有一个二重的零点或说有二阶零点;当0时,方程ax2+bx+c=0没有实数根,二次函数的图象与x轴无交点,二次函数没有零点.(2)二次函数零点的性质.当函数的图象通过零点且穿过x轴时,函数值变号;相邻两个零点之间的所有函数值保持同号.,1,2,3,4,【
4、做一做2-1】 若函数f(x)=x2+ax+b有两个零点2和3,则a-b的值等于.解析:依题意知2和3是方程x2+ax+b=0的两个根,所以a-b=-11.答案:-11【做一做2-2】 已知函数f(x)=ax2+4x+a有二阶零点,则a的值为.解析:由题意可知f(x)是二次函数,且=0,即42-4a2=0,得a=2.答案:2,1,2,3,4,3.零点存在性的判断方法如果函数y=f(x)在一个区间a,b上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)0,f(2)=130,所以f(-1)f(0)0.所以f(x)的零点在区间-1,0内.答案:B,1,2,4,3,4.求函数零点近似
5、解的一种计算方法二分法(1)二分法的定义.对于在区间a,b上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(2)“二分法”求函数零点的一般步骤.已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求函数零点的一般步骤:第一步在D内取一个闭区间a0,b0D,使f(a0)与f(b0)异号,即f(a0)f(b0)0.零点位于区间a0,b0中.,1,2,4,3,第二步取区间a0,b0的中点,则此中点对应的坐标为计算f(x0)和f(a0)
6、,并判断:(1)如果f(x0)=0,则x0就是f(x)的零点,计算终止;(2)如果f(a0)f(x0)0,则零点位于区间x0,b0中,令a1=x0,b1=b0.第三步取区间a1,b1的中点,则此中点对应的坐标为,1,2,4,3,计算f(x1)和f(a1),并判断:(1)如果f(x1)=0,则x1就是f(x)的零点,计算终止;(2)如果f(a1)f(x1)0,则零点位于区间x1,b1中,令a2=x1,b2=b1.继续实施上述步骤,直到区间an,bn,函数的零点总位于区间an,bn中,当区间的长度bn-an不大于给定的精度时,这个区间an,bn中的任何一个数都可以作为函数y=f(x)的近似零点,计
7、算终止.,1,2,4,3,归纳总结1.用二分法求函数的零点的近似值的方法仅适用于函数的变号零点,对函数的不变号零点不适用.2.利用二分法求得的函数零点可能是近似值,也可能是准确值.用二分法求函数零点时,一次只能求出一个近似值.记忆口诀函数连续值两端,相乘为负有零点,区间之内有一数,方程成立很显然.要求方程近似解,先看零点的区间,每次区间分为二,分后两端近零点.,1,2,4,3,1,2,4,3,【做一做4-2】 用二分法研究函数f(x)=x2+3x-1的零点时,第一次经计算f(0)0,可得其中一个零点x0,第二次计算.以上横线应填的内容分别是()A.(0,0.5),f(0.25)B.(0,1),
8、f(0.25)C.(0.5,1),f(0.75)D.(0,0.5),f(0.125)解析:因为f(0)0,所以函数f(x)的一个零点x0(0,0.5),答案:A,一、函数的零点是实数值而不是几何中的点剖析:我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这个实数时,其函数值为零.函数f(x)的零点实际上就是方程f(x)=0的实根,方程f(x)=0有几个实根,函数f(x)就有几个零点.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,所以函数f(x)=x+1有一个零
9、点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.,二、判断函数零点存在性应注意的问题1.若函数y=f(x)在闭区间a,b上的图象是连续曲线,且满足f(a)f(b)0,则f(x)的零点不一定只有一个,也可能有多个.例如,图和分别是函数f(x)和g(x)的图象,由图知,f(x)与g(x)的图象在a,b上连续不断,且满足f(a)f(b)0,图中函数f(x)在(a,b)内有两个零点,图中函数g(x)在(a,b)内有三个零点.由此可见,满足题设条件的函数的零点不一定只有一个.,2.当函数f(x)在闭区间a,b上的图象是连续曲线,且在区间(a,b)内至少有一个零点时,不一定就必须有
10、f(a)f(b)0.3.若函数y=f(x)在闭区间a,b上的图象不是连续曲线,那么当f(a)f(b)0,f(b)0,则函数f(x)在区间(a,b)内()A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点,题型一,题型二,题型三,题型四,题型五,解析:由于二次函数f(x)=x2+mx+n中的二次项系数大于0,因此该函数的图象大致如图所示.结合上述图象可知应选C.答案:C,题型一,题型二,题型三,题型四,题型五,【变式训练2】 下列图象表示的函数中没有零点的是 ()答案:A,题型一,题型二,题型三,题型四,题型五,分析:可以直接解方程f(x)=0进行判断,也可以结合函数图象判断.,
11、题型一,题型二,题型三,题型四,题型五,反思判断函数零点的个数常用以下方法:(1)解方程f(x)=0,方程根的个数就是函数f(x)的零点的个数;(2)画出函数f(x)的图象,该图象与x轴交点的个数就是函数f(x)零点的个数;(3)将方程f(x)=0变形为g(x)=h(x),在同一坐标系中画出函数g(x)和h(x)的图象,两个图象交点的个数就是原函数f(x)零点的个数.,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,【例4】 当a取何值时,关于x的方程ax2-2x+1=0的一个根在区间(0,1)内,另一个根在区间(1,2)
12、内?分析:对a分a=0,a0,a0三种情况讨论,并利用零点的特征性质来解决.,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,【变式训练4】 已知函数f(x)=mx2+(m-3)x+1图象的零点至少有一个在原点右侧,求实数m的取值范围.(2)当m0时,f(0)=1,抛物线过点(0,1).若m0,f(x)的开口向上,如图所示.,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,【例5】 求方程x5-x3-3x2+3=0的无理根.(精确到0.1)分析:求方程的无理根问题可以通过因式分解,发现其有理
13、根,然后转化为求另一个方程的无理根问题.方程x5-x3-3x2+3=0的无理根是x3-3=0的根,只需求出g(x)=x3-3的零点即可.解:令f(x)=x5-x3-3x2+3,则f(x)=(x2-1)(x3-3),显然无理根就是x3-3=0的根.令g(x)=x3-3,以下用二分法求函数g(x)的零点.因为g(1)=-20,可以确定区间1,2作为计算的初始区间,列表如下:,题型一,题型二,题型三,题型四,题型五,取区间1.437 5,1.445 312 5两个端点精确到0.1的近似值1.4,所以原方程的无理根的近似值为1.4.,题型一,题型二,题型三,题型四,题型五,反思利用二分法求方程近似解的
14、步骤:(1)构造函数,转化为求函数的零点;(2)明确精确度和函数的零点所在的区间(通常区间的左右端点相差);(3)利用二分法求函数的零点;(4)归纳结论.,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,用二分法逐次计算,列表如下:,因为1.265 625-1.257 812 5=0.007 812 50;当f(x)=x时,f(x)在-2,2上有零点0,但f(-2)f(2)0,则该方程的根落在区间 ()A.(1,1.25)B.(1.25,1.5)C.(1.5,1.75)D.(1.75,2)解析:因为f(1)0,所以方程的根在(1,1.5)内.又因为f(1.25)
15、0;f(0)f(1)=-13=-30;f(2)f(3)=1335=4550.故f(x)在(0,1)内一定有零点.答案:B,1 2 3 4 5 6 7,5已知函数y=x2+ax+3有一个零点为2,则a的值为.,1 2 3 4 5 6 7,6下面是连续函数f(x)在1,2上一些点的函数值:由此可判断,方程f(x)=0的一个近似解为.(精确到0.1)解析:由题中表格对应的数值可得,函数零点一定在区间(1.406 5,1.438)上,由精确度可知近似解为1.4.答案:1.4,7求函数y=x3-4x的零点,并画出它的图象.解:因为x3-4x=x(x2-4)=x(x-2)(x+2),所以函数y=x3-4x的零点为0,-2,2,这三个零点把x轴分成4个区间:(-,-2,(-2,0,(0,2,(2,+),在这4个区间内,取x的一些值(包括零点).列出这个函数的对应值表:,1 2 3 4 5 6 7,在平面直角坐标系中描点作图,图象如图所示.,