1、1.2.1充分条件与必要条件,高中选修数学2-1(新教材),1、命题:,可以判断真假的陈述句,可写成:若p则q。,2、四种命题及相互关系:,一、复习引入,注:两个命题互为逆否命题,它们有相同的真假性。,一、复习引入,(2)因为若ab=0 则应该有a=0 或b=0。 所以并不能得到a一定为0。,真命题,假命题,解(1)因为若xa2+b2 ,而a2+b2 2ab,所以可以 得到 x2ab 。,一、复习引入,解(1)原命题:若一个三角形有两个角相等,则这个 三角形是等腰三角形。,(2)原命题:若a2b2,则ab。,逆命题:若一个三角形是等腰三角形,则这个 三 角形有两个角相等。,逆命题:若ab,则a
2、2b2。,真命题,真命题,假命题,假命题,一、复习引入,在真命题(1)中,p是q成立所必须具备的前提。 在假命题(2)中,p不是q成立所必须具备的前提。,在真命题(1)中,p足以导致q,也就是说条件p充分了。在假命题(2)中条件p不充分。,(1)若一个三角形有两个角相等,则这个三角形是等腰三角形。 (2)若a2b2,则ab。,二、新课,二、新课,二、新课,解:命题(1)(2)是真命题,命题(3)是假命题,所以命题(1)(2)中的p是q的充分条件,1、充分条件的特征是:当p成立时,必有q成立,但当p不成立时,未必有q不成立。因此要使q成立,只需要条件p即可,故称p是q成立的充分条件。,2、必要条
3、件的特征是:当q不成立时,必有p不成立,但当q成立时,未必有p 成立。因此要使p成立,必须具备条件q,故称q是p成立的必要条件。,如何正确理解充分条件与必要条件,二、新课,解:命题(1)是真命题,命题(2)是假命题 所以命题(1)中的p是q的充分条件。,二、新课, 认清条件和结论。, 可先简化命题。, 将命题转化为等价的逆否命题后再判断。, 否定一个命题只要举出一个反例即可。,判别充分条件与必要条件,二、新课,解:命题(1)(2)是真命题,命题(3)是假命题, 所以命题(1)(2)中的q是p的必要条件。,二、新课,解:命题(1)(2)的逆命题都是真命题, 所以命题(1)(2)中的p是q的必要条件。,分析:注意这里考虑的是命题中的p是q的必要条件。 所以应该分析下列命题的逆命题的真假性。,二、新课,答:命题(1)为真命题:,命题(2)为真命题;,命题(3)为假命题;,命题(4)为真命题。,能 力 测 试,充分,必要,充分,充分,走进高考:,三、小结, 认清条件和结论。, 可先简化命题。, 将命题转化为等价的逆否命题后再判断。, 否定一个命题只要举出一个反例即可。,1、定义:,四、作业,课本P12-13习题3 1 (做在书上) 2(1)(3)(5) 3(1)(3),