分享
分享赚钱 收藏 举报 版权申诉 / 31

类型【苏教版】数学《优化方案》必修4课件:第2章2.5.ppt

  • 上传人:无敌
  • 文档编号:1347842
  • 上传时间:2018-06-29
  • 格式:PPT
  • 页数:31
  • 大小:786KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    【苏教版】数学《优化方案》必修4课件:第2章2.5.ppt
    资源描述:

    1、25向量的应用,学习目标1.能初步应用平面向量的知识、方法解决某些简单的平面几何问题、物理问题及其他一些实际问题;2体会向量是处理数学问题、物理问题等的工具,提高运算能力和解决实际问题的能力,课堂互动讲练,课前自主学案,知能优化训练,2.5向量的应用,课前自主学案,3,1用向量解决几何问题(1)建立几何与向量的联系,用向量表示问题中涉及的几何元素,将几何问题转化为向量问题(2)通过向量运算,研究几何元素之间的关系,如平行、垂直、距离、夹角等(3)将运算结果“转译”成几何关系2用向量解决物理问题或实际生活问题(1)从所给问题中抽象出数学问题(2)将数学问题转化为向量问题,并用向量方法解决数学问题

    2、(3)再用所获得的结果解释物理现象或实际生活问题,课堂互动讲练,利用向量证明平面几何的问题十分常见,在证明时,一般需先将平面图形中的边用对应向量表示,再利用向量的运算与性质进行证明,如图所示,已知ABCD中,E、F在对角线BD上,且BEFD.求证:四边形AECF是平行四边形,【名师点评】(1)利用向量的关系证明问题:通常先选取一组基底,基底中的向量最好已知模及两者之间的夹角,然后将问题中出现的向量用基底表示,再利用向量的运算法则、运算律以及一些重要性质运算,最后把运算结果还原为几何关系,(2)平面向量在坐标表示下的应用:利用平面向量的坐标表示,可以将平面几何中长度、垂直、平行等问题很容易地转化

    3、为代数运算的问题,运用此种方法必须建立适当的坐标系实现向量的坐标化,有时是不容易做到的,互动探究1如图,将ABCD改为ABC,且D是ABC内的一点,AB2AC2DB2DC2.求证:ADBC.,在解析几何中,向量既可以作为条件,也可以作为结论,又可以作为一种解题方法,利用向量可以处理解析几何中的平行、垂直、夹角、点共线、轨迹等问题借助向量的坐标表示实现几何问题代数化,运用代数运算实现问题的求解,使数与形得到有机的统一,物理学中的力、位移、速度、加速度等都是向量,在解决问题的过程中,其都是利用向量的有关知识进行求解的这类问题一般先将题中的量用向量表示,再利用向量的加、减、数乘、数量积及向量夹角的计

    4、算公式等知识进行解题,最后回归到原题,问题得以解决,一个物体受到同一平面内的三个力F1,F2,F3的作用,沿北偏东45的方向移动8 m,其中,|F1|2 N,方向为北偏东30,|F2|4 N,方向为东偏北30,|F3|6 N,方向为西偏北60,则合力所做的功是_,【名师点评】这是一个物理中的功的求解问题,对于功的求解一般是用向量的数量积,但数量积的运算有向量法和坐标法两种,对于易建立坐标系的情况优先选用坐标法求解,自我挑战2如图所示,已知力F与水平方向的夹角为30(斜向上),大小为50 N,一个质量为8 kg的木块受力F 的作用在动摩擦因数0.02的水平平面上运动了20 m问力F和摩擦力f所做的功分别为多少?(g10 m/s2),知能优化训练,本部分内容讲解结束,点此进入课件目录,按ESC键退出全屏播放,谢谢使用,

    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【苏教版】数学《优化方案》必修4课件:第2章2.5.ppt
    链接地址:https://www.docduoduo.com/p-1347842.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开