1、(2),1、求极差(即一组数据中最大值与最小值的差) 知道这组数据的变动范围4.3-0.2=4.1,2、决定组距与组数(将数据分组),3、 将数据分组(8.2取整,分为9组),复习:画频率分布直方图的步骤,4、列出频率分布表.(学生填写频率/组距一栏),5、画出频率分布直方图。,组距:指每个小组的两个端点的距离,组距组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。,频率分布直方图如下:,连接频率分布直方图中各小长方形上端的中点,得到频率分布折线图,利用样本频分布对总体分布进行相应估计,(3)当样本容量无限增大,组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线总体
2、密度曲线。,(2)样本容量越大,这种估计越精确。,(1)上例的样本容量为100,如果增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?,总体密度曲线,月均用水量/t,a,b,(图中阴影部分的面积,表示总体在某个区间 (a, b) 内取值的百分比)。,用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内取值百分比。,总体密度曲线反映了总体在各个范围内取值的百分比,精确地反映了总体的分布规律。是研究总体分布的工具.,总体密度曲线,茎叶图,某赛季甲、乙两名篮球运动员每场
3、比赛得分的原始记录如下:,(1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39,(1)乙运动员得分: 49,24,12,31,50,31,44,36,15,37,25,36,39,茎叶图,甲,乙,012345,2 55 41 6 1 6 7 94 9 0,84 6 36 83 8 9 1,叶就是从茎的旁边生长出来的数,表示得分的个位数。,茎是指中间的一列数,表示得分的十位数,茎叶图不仅能够保留原始数据,而且能够展示数据的分布情况。 从运动员的成绩的分布来看,乙运动员的成绩更好;从叶在茎上的分布情况来看,乙运动员的得分更集中于峰值附近,说明乙运动员的发挥更稳定。 在样本数据较少时,用茎叶图表示数据的效果较好。它不但可以保留所有信息,而且可以随时纪录,这对数据的纪录和表示都能带来方便。但当样本数据较多时,茎叶图就显得不太方便。因为每一个数据都要在茎叶图中占据一个空间,如果数据很多,枝叶就会很长。,练习:P73 3,作业: P84 1,