收藏 分享(赏)

13季节ARIMA模型.docx

上传人:拉拉链 文档编号:13406640 上传时间:2022-08-19 格式:DOCX 页数:12 大小:208.36KB
下载 相关 举报
13季节ARIMA模型.docx_第1页
第1页 / 共12页
13季节ARIMA模型.docx_第2页
第2页 / 共12页
13季节ARIMA模型.docx_第3页
第3页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。这类序列称为季节性序列。比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。在经济领域中,季节性序列更是随处可见。如季度时间序列、月度时间序列、周度时间序列等。处理季节性时间序列只用以上介绍的方法是不够的。描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。较早文献也称其为乘积季节模型(multiplicative seasonal model)。设

2、季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。首先用季节差分的方法消除周期性变化。季节差分算子定义为, Ds = 1- Ls 若季节性时间序列用yt表示,则一次季节差分表示为 Ds yt = (1- Ls) yt = yt - yt - s 对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q等于2时,滞后算子应为(Ls)2 = L2s。 AP (Ls) DsDyt = BQ (Ls) ut (2.60)对于上述模型,相当于假定ut是平稳的

3、、非自相关的。当ut非平稳且存在ARMA成分时,则可以把ut描述为 Fp (L) Ddut = Qq (L) vt (2.61)其中vt为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示ut的一阶(非季节)差分次数。由上式得ut = Fp-1(L) D-d Qq (L) vt (2.62)把 (2.62) 式代入 (2.60) 式,于是得到季节时间序列模型的一般表达式。 Fp(L) AP(Ls) (DdDsDyt) = Qq(L) BQ(Ls) vt (2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和

4、季节性差分次数。上式称作 (p, d, q) (P, D, Q)s 阶季节时间序列模型或乘积季节模型。保证(DdDsDyt)具有平稳性的条件是Fp(L)AP(Ls) = 0的根在单位圆外;保证(DdDsDyt)具有可逆性的条件是Qq (L)BQ (Ls) = 0的根在单位圆外。当P = D = Q = 0时,SARIMA模型退化为ARIMA模型;从这个意义上说,ARIMA模型是SARIMA模型的特例。当P = D = Q = p = q = d = 0时,SARIMA模型退化为白噪声模型。 (1, 1, 1) (1, 1, 1)12 阶月度SARIMA模型表达为 (1- f1 L) (1- a

5、1 L12) D D12 yt = (1+q1 L) (1+b1 L12) vt D D12 yt具有平稳性的条件是 | f1 | 1,| a1 | 1,D D12 yt具有可逆性的条件是 | q1 | 1,| b1 | 1。设log(Yt) = yt,变量D D12 yt在EViews中用DLOG(Y,1,12)表示(这样表示的好处是EViews可以直接预测到Y),上式的EViews估计命令是 DLOG(Y,1,12) AR(1) SAR(12) MA(1) SMA(12) (0, 1, 1) (0, 1, 1)12 阶月度SARIMA模型表达为 D D12 yt = (1+ q1 L) (

6、1+ b1 L12) vt (2.64)(2.64) 式的EViews估计命令是 DLOG(Y,1,12) MA(1) SMA(12) 由(2.64) 式得 DD12 yt = (1+q1 L) (1+b1 L12 ) vt = vt +q1 L vt +b1 L12vt + q1 b1 L13vt = vt +q1 vt 1 +b1 vt 12 + q1 b1 vt 13 上式对应的EViews估计命令是DLOG(Y,1,12) MA(1) MA(12) MA(13)模型表达式是 DD12 yt = vt +q1 vt 1 +q12 vt 12 + q13 vt 13这是一个非季节模型表达式

7、。以上两个EViews估计命令是等价的,都是估计MA(13)模型。注意:唯一不同点是上式对vt 13的系数没有约束,而对季节模型来说,相当于增加了一个约束条件,q13 =q1 b1。进一步化简 D (yt yt - 12) = vt +q1 vt 1 +b1 vt 12 + q1 b1 vt 13 D yt D yt - 12 = vt +q1 vt 1 +b1 vt 12 + q1 b1 vt 13用于预测的模型型式是 yt = yt -1 + yt - 12 yt 13 + vt +q1 vt 1 +b1 vt 12 + q1 b1 vt 13 (2.65)从上式可以看出SARIMA模型可

8、以展开为ARIMA模型。 对乘积季节模型的季节阶数,即周期长度s的识别可以通过对实际问题的分析、时间序列图以及时间序列的相关图和偏相关图分析得到。以相关图和偏相关图为例,如果相关图和偏相关图不是呈线性衰减趋势,而是在变化周期的整倍数时点上出现绝对值相当大的峰值并呈振荡式变化,就可以认为该时间序列可以用SARIMA模型描述。 建立SARIMA模型,(1)首先要确定d, D。通过差分和季节差分把原序列变换为一个平稳的序列。令 xt = DdDsD yt (2)然后用xt 建立 Fp (L) AP (Ls) xt = Qq (L) BQ (Ls) vt模型。注意:(1)用对数的季节时间序列数据建模时

9、通常D不会大于1,P和Q不会大于3。(2)乘积季节模型参数的估计、检验与前面介绍的估计、检验方法相同。利用乘积季节模型预测也与上面介绍的预测方法类似。2.9 季节时间序列建模案例 案例1:(文件名:b2c3,5b2c3)北京市1978:11989:12社会商品零售额月度数据(yt,单位:亿元人民币)曲线见图2.32,数据见表2.3。yt与时间呈指数关系且存在递增型异方差。对数的社会商品零售额月度数据(Ln yt)曲线见图2.33。Lnyt与时间近似呈线性关系(异方差问题也得到抑制)。 图2.32 yt 图2.33 Lnyt通过Lnyt的相关图和偏相关图(见图2.34)可以看到Lnyt是一个非平

10、稳序列(相关图衰减很慢)且Lnyt与其12倍数的滞后期存在自回归关系。图2.34 Lnyt的相关图(下)和偏相关图(上)对Lnyt进行一阶差分,得DLnyt(图2.35)。图2.36是对Lnyt进行2次一阶差分的结果,序列D2Ln yt是过度差分序列。从 DLnyt的相关图和偏相关图(图2.37)可以看到,通过差分 DLnyt的平稳性得到很大改进,但与其12倍数的滞后期存在显著的自相关关系。 图2.35 DLn yt 图2.36 D2Ln yt图2.37 DLnyt的相关图(下)和偏相关图(上)对Lnyt进行一次季节性差分(或12阶差分),得 D12 Lnyt(图2.38)。从 D12 Lny

11、t的相关图和偏相关图(图2.39)可以看到 D12 Lnyt仍然是非平稳的。 图2.38 D12 Lnyt,(EViews:DLOG(Y,0,12)) 图2.39 D12 Lnyt的相关图(下)和偏相关图(上) 对Lnyt进行一阶差分和一阶季节性差分,得DD12 Lnyt(见图2.40)。从xt 的相关图和偏相关图(见图2.41)可以看到DD12 Lnyt近似为一个平稳过程。图2.40 D D12 Lnyt = xt,(EViews:DLOG(Y,1,12))图2.41 DD12 Lnyt的相关图(下)和偏相关图(上) 用1978:11989:11期间数据,估计yt 的 (1, 1, 1) (

12、1, 1, 0)12阶季节时间序列模型,得结果如下: (1+ 0.5924 L) (1 + 0.4093 L12) DD12Lnyt = (1+0.4734 L) vt (2.66)(4.5) (5.4) (1.9)R2 = 0.33, s.e. = 0.146, Q36 = 15.5, c20.05(36-2-1) = 44EViews估计命令是DLOG(Y,1,12) AR(1) SAR(12) MA(1)EViews输出结果见图2.42。注意:(1)仔细对照(2.66)式和图2.42输出结果,不要把自回归系数估计值的符号写错。通过自回归特征根倒数-0.59可知,把表达式中的算子写作(1+

13、 0.5924 L)是正确的。通过移动平均特征根倒数-0.47可知,把表达式中的算子写作(1+0.4734 L) 是正确的。(2)表达式中,季节和非季节因子(特征多项式)之间是相乘关系。 (3)在EViews估计命令中把变量写作DLOG(Y,1,12)的好处是可以直接对yt和DD12 Lnyt预测。模型残差序列的相关与偏相关图如图2.43。图2.42 EViews估计结果 图2.43模型残差序列的相关与偏相关图对于DD12 Lnyt来,模型参数全部有显著性,Q36 = 15.5 c20.05(36-2-1) = 44。两种检验通过。见输出结果(2.42),对于DD12 Lnyt,模型共有14个

14、特征根。 图2.44 D12DLnyt的实际与预测序列 图2.45 yt的实际与预测序列对1989年第12月份yt进行样本外1期预测,结果如图2.46。图2.46 EViews预测结果预测误差是 h = 0.076用1978:11989:12期间数据得EViews (0, 1, 1) (0, 1, 1)12 模型估计结果如下 D D12 Lnyt = (1- 0.35 L) (1 - 0.61 L12) vt (2.67)(- 4.4) (- 9.1) R2 = 0.36, DW = 1.86, F = 71.9, s.e. = 0.038, Q36 = 21.88, c20.05 (36-2

15、) = 44模型参数全部有显著性,Q36 = 21.88 c20.05 (36-2) = 44。两种检验通过。上式变换为, DLn yt D Lnyt - 12 = vt - 0.35 vt 1 - 0.61 vt 12 + 0.2135 vt 13 Lnyt = Lnyt -1 +Ln yt - 12 Lnyt 13 + vt - 0.35 vt 1 - 0.61 vt 12 + 0.2135 vt 13 (2.68)(2.67)式也是一个可以选用的模型。表2.3 北京市社会商品零售额(yt)月度数据(单位:亿元人民币,1978:11989:12)年:月yt年:月yt年:月yt年:月yt年:

16、月yt1978:01134.31980:06168.21982:11205.81985:04343.41987:09499.51978:02119.41980:07163.51982:12248.21985:05341.21987:10505.21978:03128.31980:08161.61983:01243.21985:06346.01987:11518.71978:04126.41980:09172.91983:02217.51985:07329.91987:12617.91978:05128.81980:10166.51983:03226.21985:08328.11988:0157

17、0.71978:06127.81980:11175.21983:04223.51985:09358.21988:02561.31978:07121.11980:12197.71983:05221.01985:10358.41988:03570.41978:08118.41981:01212.11983:06220.51985:11376.61988:04567.91978:09125.71981:02177.91983:07205.81985:12451.01988:05570.91978:10123.61981:03182.91983:08206.91986:01412.01988:0660

18、3.91978:11128.51981:04184.21983:09218.81986:02374.51988:07591.81978:12145.21981:05184.01983:10216.01986:03390.01988:08636.21979:01164.71981:06182.41983:11235.01986:04387.01988:09674.51979:02126.21981:07175.61983:12282.01986:05389.81988:10647.71979:03143.71981:08172.01984:01268.41986:06397.71988:1164

19、0.51979:04143.71981:09184.91984:02227.61986:07381.41988:12804.21979:05145.51981:10184.71984:03248.61986:08386.91989:01694.31979:06143.71981:11195.11984:04247.01986:09429.81989:02673.81979:07138.41981:12224.81984:05249.91986:10428.81989:03718.71979:08136.71982:01233.61984:06253.11986:11444.41989:0469

20、0.31979:09145.51982:02182.01984:07245.51986:12527.71989:05676.61979:10150.71982:03206.61984:08249.61987:01478.31989:06665.81979:11149.01982:04202.21984:09272.31987:02442.41989:07642.21979:12164.71982:05201.71984:10278.71987:03461.41989:08638.91980:01190.31982:06202.61984:11299.41987:04458.21989:0967

21、4.11980:02174.91982:07192.81984:12366.31987:05458.21989:10652.71980:03163.21982:08186.21985:01364.81987:06468.51989:11641.91980:04168.41982:09199.31985:02349.11987:07454.51989:12734.11980:05168.61982:10198.21985:03359.11987:08458.9 案例2 香港季节GDPt数据的拟合(季节时间序列模型,file:HongKong)1980:12002:4年香港季度GDPt序列曲线见图

22、2.27(数据见表2.4,单位:港元)。19801997年GDPt随时间呈指数增长。1997年由于遭受东南亚金融危机的影响,经济发展处于停滞状态,19982002年底GDPt总量几乎没有增长。另一个特征是GDPt随时间呈递增型异方差。所以,用对数的季度GDPt数据(LnGDPt,曲线见图2.48)建立季节时间序列模型。 图2.47 GDPt 图2.48 LnGDPt通过LnGDPt的相关图和偏相关图(图2.49)可以看到LnGDPt是一个非平稳序列(相关图衰减得很慢)。图2.49 LnGDPt的相关图和偏相关图对LnGDPt进行一阶差分,得 DLnGDPt(见图2.50)。DLnGDPt的平稳

23、性得到很大改进,但其季节因素影响还很大。从 DLnGDPt的相关图和偏相关图(图2.51)也可以明显地看到这个特征。若对LnGDPt直接进行一次季节差分(四阶差分),得D4LnGDPt见图2.52。其波动性也很大。相关图和偏相关图见图2.53。D2LnGDPt显然是过度差分序列(图2.54)。 图2.50 DLnGDPt ,(s.d. = 0.062) 图2.51 DLnGDPt的相关图和偏相关图 图2.52 D4LnGDPt,(s.d. = 0.076) 图2.53 D4LnGDPt的相关图和偏相关图 图2.54 D2LnGDPt ,(s.d. = 0.062) 在DLnGDPt的基础上进行

24、一阶季节差分,或在D4LnGDPt基础上进行一阶非季节差分,得 D4DLnGDPt(图2.55)。其相关图和偏相关图见图2.56。D4DLnGDPt中已经基本消除了季节变化因素。在D4DLnGDPt的基础上建立时间序列模型。 图2.55 D4DLnGDPt,(s.d. = 0.029) 图2.56 D4DLnGDPt的相关和偏相关图通过对D4DLnGDPt的相关和偏相关图分析,应该建立(2, 1, 2) (1, 1, 1)4 模型。EViews估计命令是DLOG(GDP,1,4) C AR(1) AR(2) SAR(4) MA(1) MA(2) SMA(4)用1980:12002:3的数据得估

25、计结果如下(EViews输出结果如图2.57):D4DLnGDPt = - 0.0023 + ut (1980:12002:3) (-2.4)(1-1.20 L+0.66 L2) (1 - 0.33 L4) ut = (1 - 1.16 L+ 0.97 L2) (1 - 0.95 L4) vt (2.69) (14.4) (-8.8) (2.8) (55.9) (86.1) (-32.8) R2 = 0.57, DW = 2.0, F = 16.1, Q36 = 19.3, c20.05 (36-3-3-1) = 42.6图2.57 EViews估计结果 图2.57模型(2.99)误差项的相关

26、和偏相关图注意:(1)不要把自回归系数估计值的符号写错。不要把均值(- 0.0023)项表达错。EViews仍然是对(D4DLnGDPt + 0.0023)建立(2, 1, 2) (1, 1, 1)4 阶季节时间序列模型,而不是对D4DLnGDPt建立季节时间序列模型。(2)季节和非季节因子之间是相乘关系。 (3)在EViews估计命令中把变量写作DLOG(GDP,1,4),好处是预测时可直接预测GDPt,也可以预测D4DLnGDPt。模型参数全部有显著性,Q36 = 19.6 c20.05 (36-3-3-1) = 42.6。两种检验通过。依据输出结果,对于D4DLnGDPt,模型共有12个

27、特征根。4个实根,8个复根。 图2.58 D4DLnGDPt的实际与预测序列 图2.59 GDPt的实际与预测序列对2002年第4季度GDPt进行样本外1期预测,结果如下:预测误差是 h = 0.006表2.4 香港季度GDPt数据(1980:12002:4,单位:港元)年:月GDPt /1011年:月GDPt /1011年:月GDPt /1011年:月GDPt /10111980:10.314891985:40.709511991:31.805801997:23.323351980:20.345051986:10.691081991:41.867221997:33.515011980:30.

28、376411986:20.731021992:11.766611997:43.534311980:40.385661986:30.833721992:21.891291998:13.095481981:10.388301986:40.884191992:32.100271998:23.189781981:20.406321987:10.843181992:42.155011998:33.264211981:30.443071987:20.898611993:12.055681998:43.249051981:40.474731987:31.052621993:22.186041999:12.9

29、05251982:10.450421987:41.068861993:32.414881999:23.057981982:20.459731988:11.002611993:42.471491999:33.192251982:30.507031988:21.068981994:12.363701999:43.305861982:40.513681988:31.222241994:22.492992000:13.084571983:10.471991988:41.278651994:32.688342000:23.127801983:20.502141989:11.182061994:42.75

30、2712000:33.305001983:30.559781989:21.260581995:12.535322000:43.366021983:40.600881989:31.395511995:22.662212001:13.095511984:10.578521989:41.432661995:32.836712001:23.124601984:20.628401990:11.310331995:42.928402001:33.257071984:30.685801990:21.406881996:12.736982001:43.312761984:40.682001990:31.559501996:22.919962002:13.014821985:10.661181990:41.599491996:33.135382002:23.084431985:20.658491991:11.490031996:43.316952002:33.264171985:30.699691991:21.609421997:13.072792002:43.3474012

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 企业信息化

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报