1、新课标人教版课件系列,高中数学选修1-1,3.5导数及其应用-小结,审校:王伟,教学 目标,【知能目标】1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。2、熟记基本导数公式:xm(m为有理数)、sinx、cosx、ex、ax、lnx、logax的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。,教学方法
2、1.采用“学案导学”方式进行教学。 2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。教学流程:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评.教学重点和难点教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用,第三章 导数及其应用,微积分主要与四类问题的处理相关:,一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等。 导数是微积分的核心
3、概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。,3.5.1变化率问题,问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?,我们来分析一下:,气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是,如果将半径r表示为体积V的函数,那么,当V从0增加到1时,气球半径增加了气球的平均膨胀率为,当V从1增加到2时,气球半径增加了气球的平均膨胀率为,显然0.620.16,思考?,当空气容量从V1增加到V2时,气球的平均膨胀率是多少?,问题2 高台跳水,在高台跳水运动中,
4、运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?,请计算,请计算,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。,平均变化率定义:,若设x=x2-x1, f=f(x2)-f(x1) 则平均变化率为,这里x看作是对于x1的一个“增量”可用x1+x代替x2同样f=y=f(x2)-f(x1),上述问题中的变化率可用式子 表示,称为函数f(x)从x1到x2的平均变化率,思考?,观察函数f(x)的图象平均变化率表示什么?,O,A,B,x,y,Y=f(x),
5、x1,x2,f(x1),f(x2),x2-x1,f(x2)-f(x1),直线AB的斜率,做两个题吧!,1 、已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+x,-2+y),则y/x=( )A 3 B 3x-(x)2C 3-(x)2 D 3-x,D,2、求y=x2在x=x0附近的平均速度。 2x0+x,小结:,1.函数的平均变化率,2.求函数的平均变化率的步骤:(1)求函数的增量f=y=f(x2)-f(x1);(2)计算平均变化率,练习:,过曲线y=f(x)=x3上两点P(1,1)和Q (1+x,1+y)作曲线的割线,求出当x=0.1时割线的斜率. K=3x+(x)
6、2=3+30.1+(0.1)2=3.31,作业:,第二教材P67 A 1、2、4,B 5,3.5.2 导数的概念,在高台跳水运动中,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度.,又如何求瞬时速度呢?,如何求(比如, t=2时的)瞬时速度?通过列表看出平均速度的变化趋势:,当t趋近于0时,平均速度有什么变化趋势?,瞬时速度?,我们用 表示 “当t=2, t趋近于0时,平均速度趋于确定值-13.1”.,那么,运动员在某一时刻t0的瞬时速度?,导数的定义:,从函数y=f(x)在x=x0处的瞬时变化率是:,应用:,例1 物体作自由落体运动
7、,运动方程为: 其中位 移单位是m,时间单位是s,g=10m/s2.求: (1) 物体在时间区间2,2.1上的平均速度; (2) 物体在时间区间2,2.01上的平均速度; (3) 物体在t=2(s)时的瞬时速度.,解:,(1)将 t=0.1代入上式,得:,(2)将 t=0.01代入上式,得:,即物体在时刻t0=2(s)的瞬时速度等于20(m/s).当时间间隔t 逐渐变小时,平均速度就越接近t0=2(s) 时的瞬时速度v=20(m/s).,应用:,例2 将原油精练为汽油、柴油、塑胶等各种不同产品,需要对原由进行冷却和加热。如果第 x(h)时,原由的温度(单位:0C)为 f(x)=x2-7x+15
8、(0x8).计算第2(h) 和第6(h)时,原由温度的瞬时变化率,并说明它们的意义。,关键是求出:,它说明在第2(h)附近,原油温度大约以3 0C/H的速度下降;在第6(h)附近,原油温度大约以5 0C/H的速度上升。,应用:,例3质量为kg的物体,按照s(t)=3t2+t+4的规律做直线运动,()求运动开始后s时物体的瞬时速度;()求运动开始后s时物体的动能。,练习:,求函数y=3x2在x=1处的导数.分析:先求f=y=f(x)-f() =6x+(x)2 再求再求,小结:,1求物体运动的瞬时速度:(1)求位移增量s=s(t+t)-s(t) (2)求平均速度(3)求极限,1由导数的定义可得求导数的一般步骤:(1)求函数的增量y=f(x0+t)-f(x0) (2)求平均变化率(3)求极限,作业:,课本86页 A 1,2,3。,再见,