1、充分条件与必要条件,高中选修数学1-1(新教材),复 习,小 结,作 业,新 课,1、命题:,可以判断真假的陈述句,可写成:若p则q。,2、四种命题及相互关系:,一、复习引入,小 结,作 业,复 习,新 课,注:两个命题互为逆否命题,它们有相同的真假性。,一、复习引入,小 结,作 业,复 习,新 课,3、例 :判断下列命题的真假。 (1)若xa2+b2,则x2ab 。 (2)若ab=0,则a=0。,(2)因为若ab=0 则应该有a=0 或b=0。 所以并不能得到a一定为0。,真命题,假命题,解(1)因为若xa2+b2 ,而a2+b2 2ab,所以可以 得到 x2ab 。,一、复习引入,小 结,
2、作 业,复 习,新 课,4、例, 将(1)改写成“若p,则q”的形式 并判断下列命题的真假及其逆命题的真假。 (1)有两角相等的三角形是等腰三角形。 (2)若a2b2,则ab。,解(1)原命题:若一个三角形有两个角相等,则这个 三角形是等腰三角形。,(2)原命题:若a2b2,则ab。,逆命题:若一个三角形是等腰三角形,则这个 三 角形有两个角相等。,逆命题:若ab,则a2b2。,真命题,真命题,假命题,假命题,一、复习引入,在真命题(1)中,p是q成立所必须具备的前提。 在假命题(2)中,p不是q成立所必须具备的前提。,在真命题(1)中,p足以导致q,也就是说条件p充分了。在假命题(2)中条件
3、p不充分。,(1)有两角相等的三角形是等腰三角形。(2)若a2b2,则ab。,小 结,作 业,复 习,新 课,二、新课,小 结,作 业,新 课,复 习,练习1 用符号 与 填空。 (1) x2=y2 x=y;(2)内错角相等 两直线平行;(3)整数a能被6整除 a的个位数字为偶数;(4)ac=bc a=b,二、新课,复 习,小 结,作 业,新 课,二、新课,例1,下列“若p,则q”形式的命题中,哪些命题 中的p是q的充分条件? (1)若x=1,则x2 4x+3=0; (2)若f(x)=x,则f(x)为增函数; (3)若x 为无理数,则x2 为无理数,解:命题(1)(2)是真命题,命题(3)是假
4、命题,所以命题(1)(2)中的p是q的充分条件,复 习,小 结,作 业,新 课,二、新课,练习2 下列“若p,则q”形式的命题中,哪些命题中的 p是q的充分条件?,复 习,小 结,作 业,新 课,(1) 若两个三角形全等,则这两个三角形相似;,(2) 若x 5,则x 10。,解:命题(1)是真命题,命题(2)是假命题 所以命题(1)中的p是q的充分条件。,二、新课,复 习,小 结,作 业,新 课, 认清条件和结论。, 可先简化命题。, 将命题转化为等价的逆否命题后再判断。, 否定一个命题只要举出一个反例即可。,判别充分条件与必要条件,二、新课,例2 下列“若p,则q”形式的命题中,哪些命题中的
5、 q是p的必要条件?,复 习,小 结,作 业,新 课,(1) 若x=y,则x2=y2。,(2) 若两个三角形全等,则这两个三角形的面积相等。,(3) 若ab,则acbc。,解:命题(1)(2)是真命题,命题(3)是假命题, 所以命题(1)(2)中的q是p的必要条件。,二、新课,练习3 下列“若p,则q”形式的命题中,哪些命题中的 p是q的必要条件?,复 习,小 结,作 业,新 课,(1) 若a+5是无理数,则a是无理数。,(2) 若(x-a)(x-b)=0,则 x=a。,解:命题(1)(2)的逆命题都是真命题, 所以命题(1)(2)中的p是q的必要条件。,分析:注意这里考虑的是命题中的p是q的必要条件。 所以应该分析下列命题的逆命题的真假性。,二、新课,复 习,小 结,作 业,新 课,答:命题(1)为真命题:,命题(2)为真命题;,命题(3)为假命题;,命题(4)为真命题。,三、小结, 认清条件和结论。, 可先简化命题。, 将命题转化为等价的逆否命题后再判断。, 否定一个命题只要举出一个反例即可。,1、定义:,新 课,复 习,作 业,小 结,四、作业,1、课本P15,3(1)、(3)、(5)。,新 课,复 习,小 结,作 业,