1、拉格朗日一、简 介约瑟夫路易斯拉格朗日(Joseph-Louis Lagrange 17351813)法国数学家、物理学家。1736 年 1 月 25 日生于意大利都灵,1813 年 4 月 10 日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日是 18 世纪的伟大科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献。但他主要是数学家,拿破仑曾称赞他是“一座高耸在数学界的金字塔”,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用使数学的独立性更为清楚,而不仅是其他学科的工具同时在使天文学力学化、力学分析化上也起
2、了历史性作用,促使力学和天文学(天体力学 )更深入发展在天体力学领域的主要贡献是发展了摄动理论,建立了分析力学的基本理论。在限制性三体问题的研究中,在欧拉直线解的基础上,进一步得到了三角形解,也即今天常说的拉格朗日平动点。二、生 平拉格朗日 1736 年 1 月 25 日生于意大利西北部的都灵。父亲是法国陆军骑兵里的一名军官,后由于经商破产,家道中落。据拉格朗日本人回忆,如果幼年时家境富裕,他也就不会作数学研究了,因为父亲一心想把他培养成为一名律师。拉格朗日个人却对法律毫无兴趣。到了青年时代,在数学家雷维里的教导下,拉格朗日喜爱上了几何学。17 岁时,他读了英国天文学家哈雷的介绍牛顿微积分成就
3、的短文论分析方法的优点后,感觉到“分析才是自己最热爱的学科”,从此他迷上了数学分析,开始专攻当时迅速发展的数学分析。18 岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。不久后,他获知这一成果早在半个世纪前就被莱布尼兹取得了。这个并不幸运的开端并未使拉格朗日灰心,相反,更坚定了他投身数学分析领域的信心。1755 年拉格朗日 19 岁时,在探讨数学难题“等周问题”的过程中,他以欧拉的思路和结果为依据,用纯分析的方法求变分极值。第一篇论文“极大和极小的方法研究”,发展了欧拉所开创的变分法,为变分法奠定
4、了理论基础。变分法的创立,使拉格朗日在都灵声名大震,并使他在 19 岁时就当上了都灵皇家炮兵学校的教授,成为当时欧洲公认的第一流数学家。1756 年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士。1764 年,法国科学院悬赏征文,要求用万有引力解释月球天平动问题,他的研究获奖。接着又成功地运用微分方程理论和近似解法研究了科学院提出的一个复杂的六体问题(木星的四个卫星的运动问题),为此又一次于 1766 年获奖。1766 年德国的腓特烈大帝向拉格朗日发出邀请时说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家” 。于是他应邀前往柏林,任普鲁士科学院数学部主任,居住达 20 年之久,开始了
5、他一生科学研究的鼎盛时期。在此期间,他完成了 分析力学一书,这是牛顿之后的一部重要的经典力学著作。书中运用变分原理和分析的方法,建立起完整和谐的力学体系,使力学分析化了。他在序言中宣称:力学已经成为分析的一个分支。拉格朗日在柏林期间完成了大量重大研究成果,为一生研究中的鼎盛时期,多数论文在德国发表,少量仍寄回都灵其中有关月球运动(三体问题 )、行星运动、轨道计算、两个不动中心问题、流体力学、数论、方程论、微分方程、函数论等方面的成果,成为这些领域的开创性或奠基性研究此外,还在概率论、循环级数以及一些力学和几何学课题方面有重要贡献他还翻译了欧拉和 A棣莫弗(De Moivre) 的著作 1782
6、 年给拉普拉斯(Laplace)的信中说:“ 我几乎写完分析力学论述(Traitde Mcanique Analytique),但无法出版 ”拉普拉斯安排在巴黎出版,出书时已是 1788 年,拉格朗日已到巴黎了此书成为分析力学的奠基著作1783 年,拉格朗日的故乡建立了“都灵科学院“ ,他被任命为名誉院长。 1786 年腓特烈大帝去世以后,他接受了法王路易十六的邀请,离开柏林,定居巴黎,直至去世。这期间他参加了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任。1799 年,法国完成统一度量衡工作,制定了被世界公认的长度、面积、体积、质量的单位,拉格朗日为此做出了巨大的努
7、力。1791 年,拉格朗日被选为英国皇家学会会员,又先后在巴黎高等师范学院和巴黎综合工科学校任数学教授。1795 年建立了法国最高学术机构法兰西研究院后,拉格朗日被选为科学院数理委员会主席。此后,他才重新进行研究工作,编写了一批重要著作:论任意阶数值方程的解法 、 解析函数论和函数计算讲义 ,总结了那一时期的特别是他自己的一系列研究工作。1813 年 4 月 3 日,拿破仑授予他帝国大十字勋章,但此时的拉格朗日已卧床不起,4月 11 日早晨,拉格朗日逝世。三、主要成就拉格朗日科学研究所涉及的领域极其广泛。他在数学上最突出的贡献是使数学分析与几何与力学脱离开来,使数学的独立性更为清楚,从此数学不
8、再仅仅是其他学科的工具。拉格朗日总结了 18 世纪的数学成果,同时又为 19 世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题 )、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:关于解数值方程和关于方程的代数解法的研究 。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方
9、程化为低一次的方程(称辅助方程或预解式) 以求解。拉格朗日也是分析力学的创立者。拉格朗日在其名著分析力学中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了
10、限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析
11、的威力全部著作、论文、学术报告记录、学术通讯超过 500 篇拉格朗日的学术生涯主要在 18 世纪后半期当对数学、物理学和天文学是自然科学主体数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力当时的自然科学代表人物都在此三个学科做出了历史性重大贡献下面就拉格朗日的主要贡献分别评述数学分析的开拓者牛顿和莱布尼兹以后的欧洲数学分裂为两派英国仍坚持牛顿在自然哲学中的数学原理中的几何方法,进展缓慢;欧洲大陆则按莱布尼兹创立的分析方法( 当时包括代数方法),进展很快,当时叫分
12、析学(analysis)拉格朗日是仅次于欧拉的最大开拓者,在 18 世纪创立的主要分支中都有开拓性贡献3.1 变分法这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果他的第一篇论文“极大和极小的方法研究”(Recherches sur la mthode demaximis et minimies)2是他研究变分法的序幕; 1760 年发表的“关于确定不定积分式的极大极小的一种新方法”(Essai dunenouvelle mthode pour dterminer les maxima et les minima desformules integra
13、les indfinies)3是用分析方法建立变分法的代表作发表前写信给欧拉时,称此文中的方法为“变分方法”(themethod of variation)欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”(the calculus of variation)变分法这个分支才真正建立起来拉格朗日方法是对积分进行极值化,函数 y=y(x)待定他不象欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1, y1),(x2,y2)的新曲线y(x)+y(x),y(x)叫曲线 y(x)的变分J 相应的增量 J 按 y,y展开的一、二阶项叫一次变分 J和二次变分 2J他用分析方法
14、证明了 J为零的必要条件就是欧拉方程他达继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展1770 年以后,拉格朗日达研究了被积函数 f 包含高阶导数的单重和多重积分时的情况,现在已发展成为变分法的标准内容3.2 微分方程早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的 m 个特解后,可以把方程降低 m 价在柏林时期,他对
15、常微分方程的奇解和特解做出历史性贡献,在 1774 年完成的“关于微分方程特解的研究”(Sur les intgralesparticulieres des equations diffrentielles)22中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线当然,他的奇解理论还不完善,现代奇解理论的形式是由 G达布(Darboux) 等人完成的常微分方程组的研究在当时结合天体力学中的课题进行拉格朗日在 1772 年完成的“论三体问题”(Essai sur le problmedes trois corps)中,找
16、出了三体运动的常微分方程组的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立拉格朗日是一阶偏微分方程理论的建立者,他在 1772 年完成的。 “关于一阶偏微分方程的积分”(Sur lintegration des quationau differences partielles du premier order)和 1785 年完成的“一阶线性偏微分方程的一般积分方法”(Mthode gnrale pourintgrer les equations partiel
17、les du premier order lorsque cesdifferences ne sont que linaires)中,系统地完成了一阶偏微分方程的理论和解法3.3 方程论18 世纪的代数学从属于分析,方程论是其中的活跃领域拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上他在代数方程解法中有历史性贡献在长篇论文“关于方程的代数解法的思考” (Rflexions sur le resolution algbrique desequations, 全集, pp 205421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数
18、方法解出的原因三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数) 他继续寻找 5 次方程的预解函数,希望这个函数是低于 5 次的方程的解,但没有成功尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解( 有理) 函数值不变的置换构成子群,子群的阶是原置换群阶的因子因而拉格朗日是群论的先驱他的思想为后来的NH阿贝尔(Abel)和 E伽罗瓦 (Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题3.4 函数和无穷
19、级数同 18 世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广他还试图用代数建立微积分的基础在他的解析函数论(文集) 中,书名上加的小标题 “含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术”,表明了他的观点由于迥避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展拉格朗日就在解析函数论中,第一次得到微分中值定理(书中第六章)f(b)-f(a)=f(c)(b-a)(acb)后面并用它推导出泰勒(Taylor)级数,还给出余项 Rn 的具体表达式(
20、 第二十章)Rn 就是著名的拉格朗日余项形式他还着重指出,泰勒级数不考虑余项是不能用的虽然他还没有考虑收敛性,甚至各阶导数的存在性,但他强调 Rn 要趋于零表明他已注意到收敛问题他同欧拉、达朗贝尔等在任意函数能否表为三角级数的长期争论,虽未解决,但为以后三角级数理论的建立打下了基础最后要提一下他在师范学校数学基础教程中,提出了著名的拉格朗日内插公式。直到现在计算机计算大量中点内插时仍在使用另外在求多元函数相对极大极小及解微分方程中的拉格朗日任意乘子法,至今也在用除了对数学分析在 18 世纪建立的主要分支有开拓性贡献外,他对严格化问题也开始注意尽管回避了极限概念,但他仍承认可以在极限基础上建立微
21、积分(文集,p325)但正是对严格化重视不够,所建立的分支到一定阶段就很难深入这可能是他晚年研究工作少的原因他在 1781 年 9 月 21 日给达朗贝尔的信中说:“在我看来,似乎(数学)矿井已挖掘很深了,除非发现新矿脉,否则势必放弃它 ”(文集X368) 这说出了他和其他同事们的心情事实表明,19 世纪在建立数学分析严格基础后,数学更迅速地发展3.5 分析力学 牛顿的力学理论仍用几何方法讨论到 18 世纪中期,欧拉和达朗贝尔开始用分析方法,而拉格朗日在使力学分析化方面最出色,他在 1788 年出版的分析力学一书,就是分析力学这门学科建立的代表作他一生的全部力学论文以及同时代人的力学贡献,都归
22、纳到这部著作中他的研究目的是使力学成为数学分析的分支他在分析力学的序言中说:“我在其中阐明的方法,既不要求作图,也不要求几何的或力学的推理,而只是一些按照一致而正规的程序的代数(分析 )运算喜欢分析的人将高兴地看到,力学变成了它的一个新分支,并将感激我扩大了它的领域 ”实际情况正是这样拉格朗日在这方面的最大贡献是把变分原理和最小作用原理具体化,而且用纯分析方法进行推理,成为拉格朗日方法他首先引入广义坐标概念,故广义坐标又称为拉格朗日坐标一个力学系统可用有限个坐标 qj(j=1,2,N)表示; qj= dqj/dt 为相应的广义速度力学系统总动能 T(拉格朗日称之为活力)表为 qjqj 和时间
23、t 的函数后,最小作用原理成为 I=0拉格朗日用变分法讨论 I=0时,导出了力学系统的运动方程。Qj 为力学系统受到的作用力在广义坐标中的表达式,称为广义力如力为保守的,则存在势函数 V,可以得到第二类拉格朗日方程后来 SD泊松 (Poisson)等引入函数 L,L 就取名为拉格朗日函数拉格朗日还把这些方法用于研究质点组,刚体和流体在流体力学中讨论流体内各点的运动方法仍称为拉格朗日方法最后收集到文集中的分析力学是第二版,共分两卷,785 页第一卷中一半讲述“静力学”,主要讨论质点组和流体的平衡问题从分析静力学原理开始,讨论了质点组和流体的平衡条件,并用于研究行星的形状第一卷后半和第二卷全部讨论
24、“动力学”动力学部分共分为十三章,前四章讲述动力学原理和建立质点系统运动方程的拉格朗日方法,运动的一般性质第五章“用任意常数变化解动力学问题的一般近似方法”中,把他在微分方程解法中的任意常数变异法用于解动力学方程后面讨论了一阶近似的求积方法第七章“关于能看作质点的自由物体系统在引力作用下的运动”主要讲天体力学的基本问题第八、九章讨论不动中心吸引问题和刚体动力学第十章讨论地球自转和月球天平动最后三章讨论流体动力学基本问题,作为拉格朗日方法的应用拉格朗日创立分析力学使力学发展到新的阶段拉格朗日方程推广了牛顿第二运动定律;使得在任意坐标系下有统一形式的运动方程,便于处理各种约束条件等优点,至今仍为动
25、力学中的最重要的方程在分析力学第二版印出( 第二卷 1816 年) 后不久,WR 哈密顿(Hamilton)于 1834 年提出广义动量并建立哈密顿正则方程,又同 KG雅可比(Jacobi)一起建立哈密顿- 雅可比方法(1837) 后,分析力学正式奠基建成,很快用到各学科领域3.6 天体力学 天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流它的学科内容和基本理论是在 18 世纪后期建立的主要奠基者为欧拉,AC克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯最后由拉普拉斯集大成而正式建立经典天体力学拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学
26、家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理和,建立起各类天体的运动方程其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,现在仍称作拉格朗日行星运动方程,并在广泛应用,此方程对摄动理论的建立和完善起了重大作用,方程在 1780 年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”(Recherches sur la thorie des perturbations queles comtes peuvent
27、prouver par laction des plantes)中给出,得到达朗贝尔和拉普拉斯的高度评价另外在一篇有关三体问题的获奖文章中,把三体问题的运动方程组第一次降到七阶在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解,即拉格朗日平动解其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形他的这个理论结果在 100 多年后得到证实 1907 年 2 月 22 日,德国海德堡天文台发现了一颗小行星后来命名为希腊神话中的大力士阿基里斯(Achilles),编号 588,它的位置正好与太阳和木星形成等边三角形到 1970 年前,已发现 15 颗这样的小行
28、星,都以希腊神话中特洛伊(Troy) 战争中将帅们的名字命名有 9 颗位于木星轨道上前面 60处的拉格朗日特解附近,名为希腊人(Greek)群;有 6 颗位于木星轨道上后面 60处的解附近,名为脱罗央(Trojan)群1970 年以后又继续发现 40 多颗小行星位于此两群内,其中我国紫金山天文台发现四颗,但尚未命名至于为什么在特解附近仍有小行星,是因为这两个特解是稳定的1961 年又在月球轨道前后发现与地月组成等边三角形解处聚集的流星物质,是拉格朗日特解的又一证明至今尚未找到肯定在三个拉格朗日共线群(三体共线情况) 处附近的天体,因为这三个特解不稳定另外,拉格朗日在一阶摄动理论中也有重要贡献,
29、提出了计算长期摄动方法( 文集,pp125414) ,并与拉普拉斯一起提出了在一阶摄动下的太阳系稳定性定理(参见世界著名科学家传记天文学家中“拉普拉斯”条)此外,拉格朗日级数在摄动理论中有广泛应用在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题他的月球运动理论研究论文多次获奖1763 年完成的“月球天平动研究” (Recherches sur laLibration de la lune)获 1764 年度奖,此文较好地解释了月球自转和公转的角速度差异,但对月球赤道和轨道面的转动规律解释得不够好后来在 1780 年完成的论文解决得更好(参见文集 ,pp51
30、23) 获 1772 年度奖的就是著名的三体问题论文 8,也是针对月球运动研究写出的获 1774 年度奖的论文为“关于月球运动的长期差”(Sur lequation sculaire de la lune),其中第一次讨论了地球形状和所有大行星对月球的摄动关于行星和彗星运动的论文也有两次获奖1776 年度获奖的是他在 1775 年完成的三篇论文,其中讨论了行星轨道交点和倾角的长期变化对彗星运动的影响1780 年度的获奖论文就是提出著名的拉格朗日行星运动方程的那篇获 1766 年度奖的论文是“木星的卫星运动的偏差研究”(Recherches sur les ingualits des satel
31、lites de Jupiter),其中第一次讨论了太阳引力对木星的四个卫星运动的影响,结果比达朗贝尔的更好拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法(文集,pp439 532),所得结果成为轨道计算的基础另外他还得到了一种力学模型两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题(文集 ,pp67121)这些模型现在仍在应用有人用作人造卫星运动的近似力学模型此外,他在分析力学中给出的流体静力学的结果,后来成为讨论天体形状理论的基础总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯他创立的“ 分析力学” 对以后天体力学的发展有深远的影响