收藏 分享(赏)

基于改进粒子群优化算法的最优潮流计算.ppt

上传人:hyngb9260 文档编号:12437192 上传时间:2021-12-12 格式:PPT 页数:12 大小:902.50KB
下载 相关 举报
基于改进粒子群优化算法的最优潮流计算.ppt_第1页
第1页 / 共12页
基于改进粒子群优化算法的最优潮流计算.ppt_第2页
第2页 / 共12页
基于改进粒子群优化算法的最优潮流计算.ppt_第3页
第3页 / 共12页
基于改进粒子群优化算法的最优潮流计算.ppt_第4页
第4页 / 共12页
基于改进粒子群优化算法的最优潮流计算.ppt_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、 基于改进粒子群优化算法的最优潮流计算 1OPF简述 最优潮流问题是一个典型的可伸缩约束的多目标非线性规划问题 其数学模型下 Minf x u 1 g x u 0st 2 h x u 0 式中 x是状态变量的集合 u是控制变量的集合 f x u 是表征电力系统运行指标的标量函数 g x u 是等式约束 f x u 是不等式约束 式 2 是节点潮流方程 最优潮流是经过优化的潮流分布 必须满足基本潮流方程 构成最优潮流的等式约束条件即 不等式约束条件主要是控制可调控制变量在一定的容许条件范围内满足系统的安全运行 2动态调整罚函数 OPF问题一般包括等式约束和不等式约束条件 常用罚函数法来处理 罚函

2、数的基本思路是将约束条件引入原来的目标函数而形成一个新的函数 将原来约束的最优化问题的求解转化成一系列无约束最优化问题的求解 然而 合适的选取罚因子的大小比较困难 罚因子取的过大 容易陷入局部最优 罚因子取的过小 则算法很难收敛到满意的最优解 罚因子数值的选择是否恰当 对算法的收敛速度影响很大 首先将越界不等式约束以惩罚项的形式附加在原来的目标函数上 从而构成一个新的目标函数 即罚函数F x u F x u f x u h k H x u 其中 f x u 为等式 1 中原来的目标函数 h k 的数值可随迭代次数而改变 一般h k k k H x u 为惩罚项 式中 m n分别为等式约束和不等

3、式约束的个数 qi是约束条件的越界函数 是随qi改变的函数 是罚函数的乘方 和 都是根据越界量的大小动态调节其取值范围 而不是固定为常数 这样就避免了惩罚因子取的过大或过小对算法造成的影响 根据越界量的大小动态调节罚函数 能够有效的提高算法的收敛能力和求解精度 3基于粒子群优化算法和动态调整罚函数的最优潮流计算 3 1PSO在PSO算法中 每一个优化问题的潜在解都是搜索空间中的一个粒子 所有的粒子都有一个被优化的函数决定的适应值 每个粒子还有一个速度决定他们飞翔的方向和距离 然后粒子们就追随当前的最优粒子在解空间中搜索 PSO初始化为一群随机粒子 设有m个 然后通过迭代找到最优解 在每次迭代中

4、 每个粒子通过跟踪两个极值来更新自己 两个极值分别是粒子本身所找到的最优解和整个种群目前所找到的最优解 3 2计算步骤1输入系统参数 并指定每个变量的上下界值 2在满足控制变量约束条件下随机赋予种群中每个粒子初始位置和初始速度 通常控制变量的范围内随机选择一个值作为粒子的初始位置 而初始速度也在控制变量的范围内随机选择一个值作为初始速度 3对于种群中的每个粒子 应用牛顿 拉夫逊迭代法进行潮流计算和网损计算 4根据潮流计算的结果 评估种群中的每个粒子的适应值 5寻找每个粒子的个体最优 记为pBest 而pBest中的最优个体记为gBest 6更新计数器 t t 1 7确定粒子的位置 8应用牛顿 拉夫逊法进行潮流计算和网损计算 重新评估每个粒子的适应值 根据每个粒子适应值的大小 判断是否更新每个粒子的pBest和整个种群的pBest 9若满足算法的停止标准 则转向下一步骤 否则转向步骤6 10输出最优解 即最后一次迭代后的gBest

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报