1、线性控制系统工程,第二章传递函数和方框图运算,传递函数,1.微分方程例 1 R.C 电路,(ui-输入 uo-输出),例 2 动力系统 (x-输入, y-输出),微分方程的一般形式,传递函数如果:,那么:,定义,(初始值为零),例 1和例 2的传递函数:,例 1,例 2,例 2.2,确定电枢控制永磁式直流电机的传递函数,两边进行拉普拉斯变换,假设初始状态为零:, 与 Vi之间的传递函数:, 与 Vi 之间的传递函数:,注意以下几点:,1 传递函数只适用于线性系统,一个传递函数只能描述系统一个输入与一个输出之间的关系,3 传递函数取决于系统结构和参数,传递函数有以下两种形式:1 伊文思 形式,2
2、 伯德形式,当 S=-Z1, -Z2, -Z3, .,使分子为零,称为零点 S=-P1, -P2, -P3, .,使分母为零,称为极点 零点和极点都可以是实数或复数,零点和极点在S-平面的表示, zero,例:, pole,例2.1,解:,部分分式系数:,通过反变换可得输出量:, 方框图运算,A. 将复杂的反馈控制系统简化a. 串联环节,b. 并联环节,x,y,x,y,x,y,+,+,x,y,x,y,+,+,x,y,c. 一般反馈环节,x,z,y,+,+,x,y,z,+,+,x,x,y,x,y,y,x,z,y,+,+,x,z,y,+,+,x,y,y,x,y,x,d. 求和点或分支点移动,方框图
3、处理规则,x,y,x,y,x,y,+,+,x,y,x,y,+,+,x,y,x,z,y,+,+,x,y,z,+,+,x,x,y,x,y,y,x,z,y,+,+,x,z,y,+,+,x,y,y,x,y,x,e. 多输入情况,解: 设 R=0, 设 D=0,所以,总输入为:,化简方框图的步骤:,步骤4: 将所有的求和点左移动,支 点右移(规 则 4-7),步骤1: 合并所有串联方框 (规则 1),步骤2: 合并所有并联方框 (规则 2),步骤3: 求出所有内环传递函数 (规则 3),一些重要的传递函数:,1. 系统的开环传递函数,GK(s) = G1G2H(s),2.系统的闭环传递函数,3. 误差传递函数,4. 扰动输入的闭环传递函数,5. 扰动输入的误差传递函数:,总输出和总误差:,例2.3,化简方框图,并确定闭环传递函数C/R.,R,s1,s2,s3,C,+,_,+,+,+,_,_,作业 P34, 2.3P35, 2.8, 2.9P36, 2.10,