收藏 分享(赏)

数字电子技术基础2-2.ppt

上传人:hyngb9260 文档编号:12264271 上传时间:2021-12-07 格式:PPT 页数:18 大小:782.50KB
下载 相关 举报
数字电子技术基础2-2.ppt_第1页
第1页 / 共18页
数字电子技术基础2-2.ppt_第2页
第2页 / 共18页
数字电子技术基础2-2.ppt_第3页
第3页 / 共18页
数字电子技术基础2-2.ppt_第4页
第4页 / 共18页
数字电子技术基础2-2.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2 2逻辑函数的卡诺图化简法 2 2 2逻辑函数的最小项表达式 2 2 1最小项的定义及性质 2 2 4用卡诺图化简逻辑函数 2 2 3用卡诺图表示逻辑函数 1 逻辑代数与普通代数的公式易混淆 化简过程要求对所有公式熟练掌握 2 代数法化简无一套完善的方法可循 它依赖于人的经验和灵活性 3 用这种化简方法技巧强 较难掌握 特别是对代数化简后得到的逻辑表达式是否是最简式判断有一定困难 卡诺图法可以比较简便地得到最简的逻辑表达式 代数法化简在使用中遇到的困难 n个变量X1 X2 Xn的最小项是n个因子的乘积 每个变量都以它的原变量或非变量的形式在乘积项中出现 且仅出现一次 一般n个变量的最小项应有

2、2n个 1 最小项的意义 2 2 1最小项的定义及其性质 对于变量的任一组取值 全体最小项之和为1 对于任意一个最小项 只有一组变量取值使得它的值为1 对于变量的任一组取值 任意两个最小项的乘积为0 三个变量的所有最小项的真值表 2 最小项的性质 3 最小项的编号 三个变量的所有最小项的真值表 m0 m1 m2 m3 m4 m5 m6 m7 最小项的表示 通常用mi表示最小项 m表示最小项 下标i为最小项号 2 2 2逻辑函数的最小项表达式 为 与或 逻辑表达式 在 与或 式中的每个乘积项都是最小项 m7 m6 m3 m5 逻辑函数的最小项表达式 例2将 化成最小项表达式 a 去掉非号 b 去

3、括号 2 2 3用卡诺图表示逻辑函数 1 卡诺图的引出 卡诺图 将n变量的全部最小项都用小方块表示 并使具有逻辑相邻的最小项在几何位置上也相邻地排列起来 这样 所得到的图形叫n变量的卡诺图 逻辑相邻的最小项 如果两个最小项只有一个变量互为反变量 那么 就称这两个最小项在逻辑上相邻 1 0 1 0 0 1 00 01 11 10 三变量卡诺图 四变量卡诺图 两变量卡诺图 2 卡诺图的特点 各小方格对应于各变量不同的组合 而且上下左右在几何上相邻的方格内只有一个因子有差别 这个重要特点成为卡诺图化简逻辑函数的主要依据 3 已知逻辑函数画卡诺图 当逻辑函数为最小项表达式时 在卡诺图中找出和表达式中最

4、小项对应的小方格填上1 其余的小方格填上0 有时也可用空格表示 就可以得到相应的卡诺图 任何逻辑函数都等于其卡诺图中为1的方格所对应的最小项之和 例2画出下式的卡诺图 2 填写卡诺图 2 2 4用卡诺图化简逻辑函数 1 化简的依据 2 化简的步骤 用卡诺图化简逻辑函数的步骤如下 4 将所有包围圈对应的乘积项相加 1 将逻辑函数写成最小项表达式 2 按最小项表达式填卡诺图 凡式中包含了的最小项 其对应方格填1 其余方格填0 3 合并最小项 即将相邻的1方格圈成一组 包围圈 每一组含2n个方格 对应每个包围圈写成一个新的乘积项 本书中包围圈用虚线框表示 画包围圈时应遵循的原则 例 用卡诺图法化简下

5、列逻辑函数 2 画包围圈合并最小项 得最简与 或表达式 解 1 由L画出卡诺图 0 2 5 7 8 10 13 15 例 用卡诺图化简 圈0 圈1 2 2 5含无关项的逻辑函数及其化简 1 什么叫无关项 在真值表内对应于变量的某些取值下 函数的值可以是任意的 或者这些变量的取值根本不会出现 这些变量取值所对应的最小项称为无关项或任意项 在含有无关项逻辑函数的卡诺图化简中 它的值可以取0或取1 具体取什么值 可以根据使函数尽量得到简化而定 例 要求设计一个逻辑电路 能够判断一位十进制数是奇数还是偶数 当十进制数为奇数时 电路输出为1 当十进制数为偶数时 电路输出为0 解 1 列出真值表 2 画出卡诺图 3 卡诺图化简

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报