收藏 分享(赏)

格林 面板数据讲义-20a-hazardmodels.ppt

上传人:天天快乐 文档编号:1207019 上传时间:2018-06-18 格式:PPT 页数:33 大小:355.50KB
下载 相关 举报
格林 面板数据讲义-20a-hazardmodels.ppt_第1页
第1页 / 共33页
格林 面板数据讲义-20a-hazardmodels.ppt_第2页
第2页 / 共33页
格林 面板数据讲义-20a-hazardmodels.ppt_第3页
第3页 / 共33页
格林 面板数据讲义-20a-hazardmodels.ppt_第4页
第4页 / 共33页
格林 面板数据讲义-20a-hazardmodels.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、Econometric Analysis of Panel Data,William GreeneDepartment of EconomicsStern School of Business,Econometric Analysis of Panel Data,20A. Hazard and Duration Models,Modeling Duration,Time until business failureTime until exercise of a warrantyLength of an unemployment spellLength of time between chil

2、drenTime between business cyclesTime between wars or civil insurrectionsTime between policy changesEtc.,Hazard Models for Duration,Basic hazard rate modelParametric modelsDuration dependenceCensoringTime varying covariatesSample selection,The Hazard Function,Hazard Function,A Simple Hazard Function,

3、Duration Dependence,Parametric Models of Duration,Censoring,Accelerated Failure Time Models,Proportional Hazards Models,Estimation,Time Varying Covariates,Unobserved Heterogeneity,Interpretation,What are the coefficients?Are there marginal effects?What is of interest in the study?,A Semiparametric M

4、odel,Nonparametric Approach,Based simply on counting observationsK spells = ending times 1,Kdj = # spells ending at time tjmj = # spells censored in interval tj , tj+1)rj = # spells in the risk set at time tj = (dj+mj)Estimated hazard, h(tj) = dj/rjEstimated survival = 1 h(tj) (Kaplan-Meier “product

5、 limit” estimator,Kennans Strike Duration Data,Kaplan Meier Survival Function,Hazard Rates,Hazard Function,Weibull Model,+-+| Loglinear survival model: WEIBULL | Log likelihood function -97.39018 | Number of parameters 3 | Akaike IC= 200.780 Bayes IC= 207.162 |+-+-+-+-+-+-+-+|Variable | Coefficient

6、| Standard Error |b/St.Er.|P|Z|z | Mean of X|+-+-+-+-+-+-+ RHS of hazard model Constant 3.82757279 .15286595 25.039 .0000 PROD -10.4301961 3.26398911 -3.196 .0014 .01102306 Ancillary parameters for survival Sigma 1.05191710 .14062354 7.480 .0000,Weibull Model,+-+ | Parameters of underlying density a

7、t data means: | | Parameter Estimate Std. Error Confidence Interval | | - | | Lambda .02441 .00358 .0174 to .0314 | | P .95065 .12709 .7016 to 1.1997 | | Median 27.85629 4.09007 19.8398 to 35.8728 | | Percentiles of survival distribution: | | Survival .25 .50 .75 .95 | | Time 57.75 27.86 11.05 1.80

8、| +-+,Survival Function,Hazard Function,Loglogistic Model,+-+| Loglinear survival model: LOGISTIC | Dependent variable LOGCT | Log likelihood function -97.53461 | Censoring status variable is C |+-+-+-+-+-+-+-+|Variable | Coefficient | Standard Error |b/St.Er.|P|Z|z | Mean of X|+-+-+-+-+-+-+ RHS of

9、hazard model Constant 3.33044203 .17629909 18.891 .0000 PROD -10.2462322 3.46610670 -2.956 .0031 .01102306 Ancillary parameters for survival Sigma .78385188 .10475829 7.482 .0000+-+| Loglinear survival model: WEIBULL | Log likelihood function -97.39018 | Number of parameters 3 |Variable | Coefficien

10、t | Standard Error |b/St.Er.|P|Z|z | Mean of X|+-+-+-+-+-+-+ RHS of hazard model Constant 3.82757279 .15286595 25.039 .0000 PROD -10.4301961 3.26398911 -3.196 .0014 .01102306 Ancillary parameters for survival Sigma 1.05191710 .14062354 7.480 .0000,Loglogistic Hazard Model,Sample Selection,Building a

11、 Likelihood for a Weibull Duration Model with Selection,Building the Likelihood,Conditional Likelihood,Weibull Model with Selection,Strategy: Hermite quadrature or maximum simulated likelihood. Not by throwing a lambda into the likelihoodCould this be done without joint normality?How robust is the model?Is there any other approach available?,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报