1、硕士学位论文并网光伏电站引起的电压波动与闪变的研究申请人:全凤丽学科专业:电气工程指导教师:李建华 教授2011 年 05 月Studies on Voltage Fluctuation and Flicker Causedby Integrated Photovoltaic PowerA thesis submitted toXian Jiaotong Universityin partial fulfillment of the requirementfor the degree ofMaster of Engineering ScienceByFengli Quan(Electrical
2、 Engineering) Supervisor: Prof. Jianhua LiMay 2011摘 要I论文题目:并网光伏电站引起的电压波动与闪变的研究学科专业:电气工程申 请 人 :全凤丽指导教师:李建华 教授摘 要传统的电力系统供电需要消耗大量煤炭、天然气等不可再生资源,并且对环境产生污染,太阳能以其清洁、可再生等优点而得到人们的关注。光伏电池输出功率与太阳辐射强度、温度、风速等环境因素相关,而这些因素由于受自然条件的影响是随机变化的,因此光伏电池的输出功率是不稳定的。对于并网光伏系统,这种不稳定的功率注入电网,将会引起电网的电压波动和闪变问题。为了全面研究光伏电站引起的系统节点电压波
3、动,本文采用随机潮流来评估光伏电站对系统电压波动的影响,其中的随机潮流算法以半不变量法为基础,使用 Gram-Charlier 级数进行运算得到待求变量的概率密度函数及相应参数。文中,首先建立了太阳能发电的随机概率数学模型,该模型全面考虑了太阳辐射强度、温度、光伏电池物理性质对光伏电池出力的影响,能模拟任意时间、地点的太阳能电池出力;然后将此模型接入系统中进行随机潮流计算,得到节点电压概率分布函数。对于光伏电站引起的系统电压闪变问题,本文首先介绍了电压闪变的基本概念,然后介绍了 IEC 推荐的闪变测量仪原理与设计。由于闪变仪的设计过程相当复杂,为了简化分析过程而又能得出比较准确的结果,本文采用
4、离散化方法进行电压闪变的计算。首先用蒙特卡罗法对所建光伏电站出力进行抽样,然后将光伏电站接入系统,运用确定性潮流计算系统各节点电压,得到节点电压序列,最后将 IEC 标准中的单位瞬时闪变值对应的电压波动进行拟合,利用离散化方法计算得到瞬时电压闪变值。将以上研究方法应用于 IEEE 24 节点网络,得到了系统节点电压概率密度函数、电压越限概率及电压闪变值。研究结果表明光伏电站的接入可能引起系统电压波动与闪变问题。但通过合理选择安装地点及光伏电站的接入容量,光伏发电带来的电压波动与闪变问题几乎可以忽略。关 键 词:太阳能发电;随机潮流;半不变量;电压波动与闪变论文类型:应用研究西安交通大学硕士学位
5、论文IITitle: Studies on Voltage Fluctuation and Flicker Caused by Integrated Photovoltaic Power Speciality: Electrical EngineeringApplicant: Fengli QuanSupervisor: Prof. Jianhua LiABSTRACTTraditional power system needs to consume a lot of coal, natural gas and other non-renewable resources and will po
6、llute environment. Being clean, and renewable, solar energy has draw more and more attention. For grid-connected photovoltaic system, voltage fluctuation and flicker is increasingly significant under the influence of the random fluctuations of PV power plant output generated by natural conditions. O
7、utput of photovoltaic cells is related to solar radiation intensity, temperature, wind speed and other environmental factors. Due to natural conditions, these factors change randomly, so the output of photovoltaic cells is unstable. For grid-connected photovoltaic systems, this instable power inject
8、ed into the grid, will cause voltage fluctuation and flicker issues. For a comprehensive study of the system bus voltage fluctuations, this paper uses stochastic load flow to assess the effection of photovoltaic power to the bus voltage. The stochastic load flow algorithm is based on cumulants, and
9、uses the Gram-Charlier series to calculate the unknown variables probability density function and the corresponding parameters. In this paper, first of all, a stochastic model of photovoltaic power station which takes into account the solar radiation intensity, temperature, physical properties of ph
10、otovoltaic cells was estabished, and this stochastic model can simulate the output of the solar cell at any time and any place; then, the probabilistic distributions of constraint violation of node voltages were achieved by stochastic load flow calculation after this model is integated with the syst
11、em.For the voltage flicker problem, this paper simply gives the basic concepts of voltage flicker, and then briefly introduces the principle and design of the IEC recommended flicker meter. The principle and design of the flicker meter is complex, so discrete method was used for voltage flicker calc
12、ulation to simplify the analysis process and to get accurate results in the same time. First, Monte Carlo method was used to sample the output of the photovoltaic power plants.Then the PV power station was connected to the system and node voltage sequences was obtained by deterministic load flow cal
13、culation, and finally the IEC standard voltage fluctuations value for units instantaneous flicker was fitted to a proper function and the value of the instantaneous voltage flicker was calculated using the discrete method.ABSTRACTIIIThe above method is applied to IEEE 24 test system, the probabilist
14、ic density functions of bus voltages, the probability of constraint violation of node voltages and voltages flicker values are obtained. The results show that grid-connected PV power system may cause voltage fluctuation and flicker issues. However, by properly selecting the installation site and the
15、 capacity of photovoltaic power plants, voltage fluctuation and flicker problem caused by photovoltaic power is negligible.KEY WORDS: Solar power; Stochastic load flow; Cumulants; Voltage fluctuation and flickerTYPE OF THESIS: Applied Research西安交通大学硕士学位论文IV目 录1 绪论 .11.1 课题的研究背景及意义 .11.2 光伏发电在国内外的发展与
16、研究现状 .31.2.1 光伏发电在国内外的发展 .31.2.2 光伏发电在国内外的研究现状 .41.3 光伏发电系统的介绍 .51.3.1 光伏发电系统的组成 .51.3.2 光伏发电系统的分类 .51.4 本文所做的工作 .62 光伏电池出力建模 .82.1 概述 .82.2 太阳光辐射强度模型 .92.2.1 太阳常数 .92.2.2 太阳高度角及太阳赤纬角 .92.2.3 日照时间 .92.2.4 太阳入射角与天顶角 .102.2.5 日地距离的影响 .102.2.6 云层的影响 .102.2.7 光伏电池板安装倾角 .112.2.8 一天中太阳总辐射量 .122.3 温度模型 .12
17、2.4 光伏电池特性 .132.4.1 光伏电池的主要参数 .132.4.2 光伏电池输出特性 .132.4.3 最大功率跟踪 .162.4.4 仿真模型 .172.5 光伏电池概率模型 .182.6 算例分析 .192.6.1 所需数据 .192.6.2 计算结果 .202.7 本章小结 .22目 录绪论V3 含光伏电站的电力系统电压波动 .233.1 概述 .233.2 电压波动的一般原理 .243.3 含光伏电站的电力系统随机潮流计算 .253.3.1 随机潮流简介 .253.3.2 相关概率理论 .263.3.3 线性化模型 .293.3.4 Gram-Charlier 级数求取随机变
18、量的概率分布 .303.3.5 节点注入功率的随机分布及其半不变量求法 .323.3.6 算法流程图 .343.3.7 算法说明 .353.4 算例分析 .363.5 本章小结 .424 光伏电站并网引起电压闪变的研究 .444.1 概述 .444.2 基本概念 .454.2.1 闪变觉察率 F .454.2.2 瞬时闪变视感度 S(t).454.2.3 视感度特性系数 Kf.464.2.4 短时间闪变值 stP.464.3 闪变测试系统 .474.3.1 电压波动信号检出方法 .474.3.2 闪变测试仪设计原理 .484.4 计算闪变值的离散化方法 .494.5 算例分析 .514.6 本
19、章小结 .545 结论与展望 .55参考文献 .57致 谢 .60攻读学位期间取得的研究成果 .61声明西安交通大学硕士学位论文VICONTENTS1 Preface .11.1 Background and Significance of The Subject .11.2 The Development and Research of Photovoltaic Power At Home and Abroad .31.2.1 Development of Photovoltaic Power.31.2.2 Present Research of Photovoltaic Power.41.
20、3 Introduction of Photovoltaic Power .51.3.1 Composition of Photovoltaic Power.51.3.2 Categories of Photovoltaic Power .51.4 The Primary Contents of This Thesis.62 Output Model of Photovoltaic Power.82.1 Overview .82.2 Model of Solar Radiation Intensity .92.2.1 Solar Constant .92.2.2 Solar Elevation
21、 Angle and Declination Angle .92.2.3 Daylight Time.92.2.4 Solar Incidence Angle and Zenith Angle .102.2.5 Impact of The Sun-Earth Distance .102.2.6 Impact of Cloud.102.2.7 Installation Angle of PV Panels .112.2.8 Daily Total Solar Radiation.122.3 Model of Temperature.122.4 Characteristics of Photovoltaic Cells .132.4.1 Main Parameters of Photovoltaic Cells .132.4.2 Output Characteristics of Photovoltaic Cells .132.4.3 Maximum Power Point Tracking .162.4.4 Simulation Model .172.5 Probabilistic Model of Photovoltaic Cells.182.6 Examples and Analysis .192.6.1 Parameters .