1、 Page 1 of 19安防标准教程防爆技术知识与防爆工程简介目 录Page 2 of 19第一章 防爆技术基础 .21.1 危险场所的划分 .21.1.1 爆炸性粉尘环境危险区域的划分 .21.1.2 爆炸性气体环境 的危险区域划分 .31.2 气体组别与温度组别 .31.3 爆炸防护的基本原理 .41.3.1 可燃物浓度的抑制 .41.3.2 氧浓度的控制 .41.3.3 点火源的控制 .41.3.4 减弱爆炸压力和冲击波 .51.4 防爆电气设备的类型 .51.4.1 隔爆型结构 .51.4.2 增安型结构 .51.4.3 正压型结构 .61.4.4 充砂型结构 .61.4.5 本质安
2、全型结构 .61.4.6 防爆充油型结构 .61.4.7 爆炸性粉尘环境的防爆结构 .61.5 爆炸性气体环境中电气设备的防爆类型的选择 .71.6 防爆设备的标志 .71.6.1 爆炸性气体环境防爆设备标志 .71.6.2 爆炸性粉尘环境防爆设备标志 .8第二章 工业电视系统中的防爆设备 .82.1 防爆电器的种类 .82.1.1 防爆控制箱类 .82.1.2 防爆起动器类 .82.2.3 防爆控制开关类 .82.1.4 防爆主令电器类 .92.1.5 防爆接线箱类 .92.1.6 防爆灯具类 .92.1.7 防爆连接类 .92.1.8 防爆风扇类 .92.1.9 具有发热功能的防爆电器类
3、.92.1.10 防爆报警电器类 .102.1.11 防爆电磁铁类 .102.1.12 防爆其它类 .102.2 工业电视系统中的防爆设备 .102.2.1 隔爆型防爆防护罩 .112.2.2 隔爆型防爆云台 .112.2.3 防爆接线箱 .112.2.4 防爆产品配件 .12第三章 爆炸性危险环境中的工业电视系统设计 .123.1 设计依据 .12Page 3 of 193.2 爆炸性危险环境的工业电视系统的实际设计 .133.2.1 防爆区域的确定 .133.2.2 防爆设备的选择 .13第四章 爆炸性危险环境中的工业电视系统安装 .154.1 线缆的敷设 .154.2 专用防爆工具 .1
4、64.3 设备的安装 .164.4 接地 .174.5 防雷 .17第一章 防爆技术基础石油、化工、煤炭和国防等许多工业部门,在生产、加工、运输和贮存的各个过程中,经常可能泄露或溢散出各种各样的易燃易爆气体、液体和各种粉尘及纤维。这类物质与空气混合后,可能成为具有爆炸危险的混合物,当混合物的浓度达到爆炸浓度范围时,一旦出现火源即会引起爆炸和发生火灾等严重事故。因此在这类危险环境中使用的电气设备都必须时经过专业机构认证的具有防爆性能的产品。1.1 危险场所的划分根据国际电工委员会(IEC)制定的关于危险环境的划分中明确规定,在大气条件下,粉尘或纤维状的可燃物质与空气形成混合物在点燃后燃烧传至未全
5、部未燃混合物的环境为爆炸性粉尘环境,称为 I 类环境;在大气条件下,气体、蒸气或薄雾状的可燃物质与空气形成混合物在点燃后燃烧传至全部未燃混合物的环境为爆炸性气体环境,称为 II 类环境。危险场所是指危险环境出现或预期可能出现的数量达到足以要求对电气设备的结构、安装和使用采用专门措施的区域,根据爆炸性环境出现的频率和持续时间把危险场所划分为不同的区域。1.1.1 爆炸性粉尘环境危险区域的划分根据可燃性粉尘/空气混合物出现的频率和持续时间及粉尘层的厚度进行分类,可分为 20 区、21 区和 22 区。20 区:zone 20,在正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与
6、空气混合物和/或可能形成无法控制和极厚的粉尘层的场所及容器内部。21 区:zone 21,在正常运行过程中,可能出现粉尘数量足以形成可燃性粉尘与空气混合物但未划入Page 4 of 1920 区的场所。该区域包括与充入排放粉尘点直接相邻的场所、出现粉尘层和正常操作情况下可能产生可燃浓度的可燃性粉尘与空气混合物的场所。22 区:zone 22,在异常条件下,可燃性粉尘云偶尔出现并且只是短时间存在、或可燃性粉尘偶尔堆积或可能存在粉尘层并且产生可燃性粉尘空气混合物的场所。如果不能保证排除可燃性粉尘堆积或粉尘层时,则应划分未 21 区。1.1.2 爆炸性气体环境的危险区域划分根据可燃性气体出现的频率和
7、持续时间将危险场所划分为 0 区、1 区和 2 区。0 区: zone 0,爆炸性气体环境连续出现或长时间存在的场所,危险环境存在的时间大于 1000 小时/年。1 区: zone 1,在正常运行时,可能出现爆炸性气体环境的场所,危险环境存在的时间在 101000小时/年之间。2 区: zone 2,在正常运行时,不可能出现爆炸性气体环境,如果出现也时偶尔发生并且仅是短时间存在的场所,危险环境存在的时间少于 10 小时/年。在此, “正常运行”是指正常的开车、运转、停车,易燃物质产品的装卸、密闭容器盖的开闭,安全阀、排放阀以及所有工厂设备都在其设计参数范围内工作的状态。1.2 气体组别与温度组
8、别对于 II 类爆炸性气体环境来说,按照爆炸性气体混合物最大试验安全间隙或最小点燃电流比,将爆炸性气体分为 A、B、C 三个组别。气体分组和点燃温度在一定环境温度和压力下与可燃性气体和空气的混合浓度有关。温度组别是在爆炸性环境中使用的电气设备按其最高表面温度来划分的,最高表面温度时电气设备在规定范围内的最不利运行条件下工作时,可能引起周围爆炸性环境点燃的电气设备任何不见或电气设备的任何表面所达到的最高温度。爆炸性气体环境的温度组别分为 T1 至 T6 六组,在假定基础环境温度为40时,各组别的温度为 T1450、T 2300、T 3200、T 4135、T 5100、T 685。对于爆炸型粉尘
9、环境,按照粉尘的点燃温度划分为 T11、T 12、T 13 三组,分别对应点燃温度为:T 11大于 270;T 12200;T 13150。对于电压不超过 1.2V、电流不超过 0.1A,且能量不超过 20 微焦或功率不超过 25mw 的电气设备,在经过防爆检验部门认可后,可直接使用于工厂爆炸性气体环境中和煤矿井下。Page 5 of 191.3 爆炸防护的基本原理现代用于工业生产的可燃物种类繁多,数量庞大,而且生产过程情况复杂,因此需要根据不同的条件采取各种相应的防护措施。从爆炸破坏力的形成来看,爆炸一般需要具备 5 个条件:提供能量的可燃性物质(释放源) ;辅助燃烧的助燃剂(氧化剂) ;可
10、燃物质与助燃剂的均匀混合;混合物放在相对封闭的空间(包围体) ;有足够能量的点火源。上述条件中的点火源、可燃物质和助燃剂是燃烧爆炸的三要素,防爆技术就是根据这些爆炸条件,采取相应的技术措施和管理措施,达到预防事故的目的。1.3.1 可燃物浓度的抑制爆炸强度与爆炸性混合物的浓度有密切关系,爆炸强度随浓度变化的关系近似于正办周期的正弦曲线,浓度国低或过高都不能发生爆炸,这两个点称为爆炸下限浓度和爆炸上限浓度。在爆炸下限浓度以下,由于可燃性物质的发热量已经低到不能维持火焰在混合物中传播所需要的最低温度,因而该混合物不能被点燃;若浓度逐渐增加而超过爆炸上限浓度时,虽然可燃物质增加,但助燃的氧气浓度低于
11、化学当量值,不能满足混合物完全燃烧的需要,也不会发生爆炸。因此可以通过可燃物浓度的控制来预防爆炸事故的发生,或者把爆炸事故可能造成的破坏力降到最小限度。1.3.2 氧浓度的控制在爆炸气氛中加入惰化介质时,一方面可以使爆炸气氛中氧组分被稀释,减少了可燃物质分子和氧分子作用的机会,也使可燃物组分同氧分子隔离,在它们之间形成以层不燃烧的屏障;当活化分子碰撞惰化介质粒子时会使活化分子失去活化能而不能反应。另一方面,若燃烧反应已经发生,产生的游离基将与惰化介质粒子发生作用,使其失去活性,导致燃烧连锁反映中断;同时,惰化介质还将大量吸收燃烧反应放出的热量,使热量不能聚积,燃烧反应不蔓延到其它可燃组分分子上
12、去,对燃烧反映起到抑制作用。因此,在可燃物/空气爆炸气氛中加入惰化介质,可燃物组分爆炸范围缩小,当惰化介质增加到足够浓度时,可以使其爆炸上限和下限重合,再增加惰化介质浓度,此时可燃空气混合物将不再发生燃烧。1.3.3 点火源的控制温度对化学反映速度的影响特别显著,对一般反应来说,若初始浓度相等,温度每升高 10反应速度大约加快 2 至 4 倍。因此,温度(也就是通常所指的点火源)使加快反应速度,引起爆炸事故的最初因Page 6 of 19素,控制点火源使防止爆炸事故的重要措施之一。1.3.4 减弱爆炸压力和冲击波爆炸现象的重要特征之一就是爆炸物质爆炸时,产生的高温高压气体产物以极高的速度膨胀,
13、使包围体内压力骤增,进而使包围体炸裂,形成冲击波,造成破坏力。为了防止或减弱因炸而使包围体内压力的骤增,应尽可能地不使包围体相对封闭。1.4 防爆电气设备的类型1.4.1 隔爆型结构电火花及电弧可以引燃爆炸性混合物。由德国建立起来的间隙隔爆结构,是防止电弧等引燃周围爆炸性混合物较可靠的方法。隔爆型结构的电气设备再爆炸危险区域应用极为广泛,它不仅能防止爆炸火燃的传出,而且壳体又可承受一定的过压。它具有一个足够牢固的外壳,能经受内部爆炸气体混合物产生最大爆炸压力的 1.5 倍并不得小于 3.5105 Pa 的冲击,确保不变形或损坏,不产生永久变形,并具有一定结构间隙以使喷射出来的燃烧生成物通过一定
14、的法兰长度冷却到低于外部爆炸性混合物的自燃温度。结构间隙可以是平面结合面或圆筒结合面组成,还可以是曲路、螺纹或屏障式等结构组成。除此之外。如微孔、网罩、叠片、充砂等结构也属于这种原理的防爆形式。用于煤矿井下的隔爆型电气设备更要坚固。用于 I 类采掘工作面的设备,外壳须采用钢板或铸钢制成;I 类非采掘工作面的设备,其外壳可用牌号不低于 HT25-47 灰铸铁制成; I 类携带式设备和 II 类设备,外壳可用抗拉强度不低于117.6N/mm2(12kg /mm2) 、含镁量不大于 0.5%(重量比)的轻合金制成。1.4.2 增安型结构增安型机构在防爆电气设备上使用得也很广泛,如电动机、变压器、灯具
15、和带有电感线圈的电气设备等。它是在设备上采用以系列的安全措施,如使用高质量的绝缘材料、降低温升、增大电气间隙、提高导线连接质量等,使其在最大限度内不致产生电火花、电弧或危险温度,或者采用有效的保护元件使其产生的火花、电弧或温度不能引燃爆炸性混合物,以达到防爆的目的。还有一种与增安型防爆措施类似称为无火花型,它是一种再正常运行时不产生火花和危险高温,也不能产生引爆故障的电气设备。与增安型相比,只是没有规定再增加一些附加措施来提高设备的安全可靠性。因此,无火花型的安全性比增安型要低,只能用于 2 区危险环境。1.4.3 正压型结构这种结构的电气设备的防爆原理是:保证内部保护气体的压力高于周围以免爆
16、炸性混合物进入外壳,或足量的保护气体通过外壳使内部爆炸性混合物的浓度降至爆炸下限以下。Page 7 of 19在一般情况下,电气设备内部不得有影响安全的通风死角。在正常运行时,出风口的风压或充气气压不得低于一定的数值,否则将立刻发出报警或切断电源。设备内部的火花、电弧不允许从任何间隙初或出风口吹出来。正压型结构在使用上与爆炸物质的级别无关,多用于内部元件易损坏的设备或大型电气设备上,或以自燃点为 T4、T5 为对象的很难制成其它防爆结构形式的电气设备上。1.4.4 充砂型结构充砂型结构是在外壳内充填砂粒或其它规定特性的粉末材料,使之在规定的使用条件下,壳内产生的电弧或高温均不能点燃周围爆炸性气
17、体环境的结构。当采用的介质使颗粒状的固体(一般是石英砂)作为隔离介质时,称为充砂型电气设备;而采用的介质时固化物填料(一般位环氧树脂) ,把引燃源浇封在填料里面,而于外面爆炸性混合物隔离时,也称为浇封型电气设备。1.4.5 本质安全型结构本质安全型结构仅适用于弱电流回路,如测试仪表、控制装置等小型电气设备上。无论是正常情况下,还是非正常情况下产生的电火花或危险温度,都不会使爆炸物质引爆,因此使安全性较高的防爆结构,其中电路或设备上的所有元件表面温度必须小于规定,以防止热效应引起的点燃。本质安全型防爆结构的电气回路必须于其它电路相隔离,以防混线电磁或静电感应,特别使结构外部的配线,要采取周密的措
18、施,才能确保电气设备和配线的防爆性能。1.4.6 防爆充油型结构防爆充油型结构在使用上与传爆等级无关,适合于小型操作开关上。充入的油液应具有较高的化学稳定性,为了观察油位的高度,设备应装有油位指示器或油位信号装置。油浸型防爆结构的开关、控制器等设备,由于油的劣化或泄漏等原因,设备损坏很难维修,需要特别注意。另外,由于倾斜或油面摇动而使防爆性能受到损害时,设备不能再继续使用。1.4.7 爆炸性粉尘环境的防爆结构粉尘防爆电气设备是采用限制外壳最高表面温度和采用“尘密”或“防尘”外壳来限制粉尘进入,以防止可燃性粉尘点燃。该类设备将带电部件安装在有一定防护能力的外壳中,从而限制了粉尘进入,使引燃源与粉
19、尘隔离来防止爆炸的产生。按设备采用外壳防尘结构的差别将设备分为 A 型设备或 B 型设备。 按设备外壳的防尘等级的高低将设备分为 20、21 和 22 级,分别适用于 20、21 或 22 区粉尘危险场所。Page 8 of 191.5 爆炸性气体环境中电气设备的防爆类型的选择对于不同区域的爆炸型气体环境(II 类环境) ,需要根据实际需要选择不同结构的防爆类型。在平常实际使用中可能很容易的看到,许多防爆电气产品在一个产品中就采用了多种防爆保护方法。例如,照明装置可能采用了增安型保护(外壳和接线端盒) 、隔爆型保护(开关)和浇封型保护(镇流器) 。这样能够使制造商采用最适用的复合防爆保护方法。
20、有一点要注意的是,产品铭牌上列出采取的防爆方法的顺序将往往告诉用户产品的结构,如一个产品被标识为 Ex de,则极可能为隔爆型而其中带有增安型部件。另一个产品被标识为 Ex ed, 则极可能不是隔爆型外壳(例如不锈钢或强化聚脂玻璃) ,而带有隔爆开关或部件安装其中。 两种产品可能均适用于 1 区,但他们是使用不同的防爆保护措施达到同样的目的。可根据自己的实际需要和所了解信息,来选择可提供在费用、性能和安全方面达到最佳平衡的防爆型式的产品1.6 防爆设备的标志1.6.1 爆炸性气体环境防爆设备标志II 类防爆设备的标志按照防爆公用标志、设备防爆型式、设备环境组别、气体组别和温度组别的顺序依次标记
21、。防爆公用标志国际电工委员会(IEC)标志“Ex ”;欧洲电工委员会(CENELEC)标志“EEx”防爆型式标志:隔爆型“d” ;增安型“e” ;正压型“p” ;充砂型“q” ;本质安全型“i” ,还细化为“ia”和“ib ”级;充油型“o” ;无火花型“n” ;浇封型“m” ;特殊型“s”设备环境组别标志I 类、II 类气体组别标志A、B、C温度组别标志T 1 至 T6如 Ex d II C T6,表示隔爆型防爆设备,可应用于爆炸性气体环境,C 气体组,温度组别 T6。Page 9 of 191.6.2 爆炸性粉尘环境防爆设备标志I 类防爆设备的标志按照防粉尘点燃公用标志、设备类型、设备等级
22、、温度组别的顺序依次标记。防粉尘点燃公用标志“DIP”设备类型“A” 、 “B”设备等级“20” 、 “21”、 “22”温度组别标志T 11 至 T13如 DIP A 21 T13, 表示可用于 21 区 A 型设备,温度组别 T13。第二章 工业电视系统中的防爆设备2.1 防爆电器的种类凡是在爆炸性危险环境下使用的电气设备都应该具有与环境防爆级别相当或高于该级别的防爆等级。在实际使用中多以隔爆型和增安型结构为主,并配合以其它防爆结构。2.1.1 防爆控制箱类此类设备包括用于控制照明系统的照明配电箱和用于控制动力系统的动力箱。这类产品大部分结构为组合式,外壳多以铸铝合金材料制作,也有使用钢板
23、、不锈钢或绝缘材料制作的。防爆控制箱内部主要由断路器、接触器、热继电器、转换开关、信号灯、按钮等元件组成,制造厂还可以根据用户需要来选择设备。此类产品的防爆等级可以达 II C T6。2.1.2 防爆起动器类此类产品包括手动起动器、电磁起动器、可逆电磁起动器、馈电开关等产品。防爆起动器类产品作为终端设备,属于应用十分广泛的产品,其外壳通常由铸铝合金或钢板制成。内部一般由接触器、电动机保护系统、信号灯、按钮和自耦变压设备组成,具有就地控制、远距离控制和自动控制功能,也由的产品中安装断路器作为总开关。2.2.3 防爆控制开关类这类产品市场需求量相对较大,主要包括照明开关、转换开关、行程开关、拉线开
24、关灯小型防爆产品,其外壳通常采用铸铝合金压铸而成的复合结构。这类产品的特点是体积小,内部元件单一,结构简单容易制作。Page 10 of 192.1.4 防爆主令电器类主令电器是用作闭合或断开控制电路,以发出命令或程序控制的开关电器,主要包括控制按钮合操作柱。防爆控制按钮外壳一般使用聚碳酸脂,玻璃纤维增强不饱和聚树脂或 ABS 塑料注塑来制造,也有少量使用铸铝材料的。这类设备的一般结构为增安型外壳,内装隔爆型元件,而且可以实现防腐功能。操作柱主要由主箱、接线箱合支柱组成。设备的主箱合接线箱材质基本上用铸铝合金材料制造,内部由各种仪表、转换开关、按钮和信号灯灯元件组成,并可以根据不同需要进行组合
25、。2.1.5 防爆接线箱类电气设备在使用中须经电缆或电线与供电网络连接起来,形成系统来完成其使用功能。但是连接导线或线缆不能无限长,而且在连接过程中由很多地方需要串联、并联进行导线分接。这就势必造成接头部分外滤,容易引发事故。防爆接线箱类产品就是为解决这类问题而生产的产品,以求进一步保证安全生产。这类产品包括接线箱、接线盒、穿线盒、吊线盒、分线盒灯。外壳主要由铸铝合金制造,根据需要设有很多进线和出线引入装置,箱内装有接线端子,用来进行连接或分接之用。这类产品大部分制成隔爆型或增安型,体积有大有小,差异较大。2.1.6 防爆灯具类这类产品是最为常见的电器设备,也是防爆产品中产量最大,使用最多的产
26、品,而且由于其特定功能,造成损耗大、更换量大的特点。从防爆性能来说,基本都采用隔爆型为主,外壳材质以铸造铝合金居多,基本上可以满足用户在 II C 级以下场所的各种照明和显示功能需要。2.1.7 防爆连接类防爆连接件主要功能是进行电缆连接和电缆分支之用。主要产品为防爆插销和防爆电源插座箱,产品外壳有金属和塑料材质制成,内部主要由接插件组成,有的产品加装由带断点的开关。这类产品大部分是用手直接操作,所以对绝缘性能要求一般较高,切不可忽视。2.1.8 防爆风扇类此类产品主要包括防爆吊扇、防爆排风扇和防爆轴流风机等产品,其结构由防爆电机、防爆接线盒和防爆调速控制器及叶片组成。2.1.9 具有发热功能的防爆电器类石化企业在生产过程中经常需要一些加热设备和电气取暖设备,主要产品包括防爆电暖器、防爆加热器。防爆控制变压器和防爆镇流器等产品在运行中也会发热,所以应该划归此类产品。防爆发热设备主要元件为绕组、控制器和接线盒等元件组成,往往具有对温度进行控制或监视的保护功能。这类产品多为隔