1、微孔加工方法在孔加工过程中,应避免出现孔径扩大、孔直线度过大、工件表面粗糙度差及钻头过快磨损等问题,以防影响钻孔质量和增大加工成本,应尽量保证以下的技术要求:尺寸精度:孔的直径和深度尺寸的精度;形状精度:孔的圆度、圆柱度及轴线的直线度;位置精度:孔与孔轴线或孔与外圆轴线的同轴度;孔与孔或孔与其他表面之间的平行度、垂直度等。同时,还应该考虑以下5个要素:1.孔径、孔深、公差、表面粗糙度、孔的结构;2.工件的结构特点,包括夹持的稳定性、悬伸量和回转性;3.机床的功率、转速冷却液系统和稳定性;4.加工批量;5.加工成本。深孔加工:一般把长径比L(孔深与孔径比)大于5的孔称为深孔。深孔加工比一般孔的加
2、工要困难和复杂,其原因是:1.由于孔深与孔径比较大,刀具细而长、刚性差,所以在钻孔时容易偏斜,产生振动,使得孔的表面粗糙度和尺寸精度不易保证。2.钻削时排屑困难。3.热量不易排出,钻头散热条件差,使得刀具磨损加剧,甚至丧失切削能力。机械钻削加工一、HSS-E(高性能高速钢)钻头由于长钻头本身的稳定度不好,因此在加工过程中必须采用较低的切削参数,而HSS较低的红硬性也要求进一步降低其切削速度。因此,在深孔加工中,外部的冷却液很难到达刀具的切削刃上,钻尖处实际进行着干加工,所有这些因素的综合导致了深孔加工需要很长的加工周期。二、枪钻硬质合金头枪钻可以实现精确而安全的孔加工,即使是在进行超常深孔的加
3、工情况下也是如此。切削液被加压泵打入钻杆内(压力约为3MPa-8MPa),然后流过切削刃,当切削液沿着刀具和零件孔壁间的V形截面空间流出时,将切屑带走。由于钻杆是空心轴,刚性差,不能采用较大的进给量,因此生产效率较低;同时,切屑必须保持小而薄的形状,才能保证被冷却液冲出;此外,由于枪钻加工中高压冷却液的使用,因此要求使用专用机床。由于枪钻钻杆为非对称形,故其抗扭刚性差,只能传递有限的扭矩,因此枪钻只适用于加工小直径孔的零件。枪钻是一种有效的深孔加工刀具,其加工范围很广,从模具钢材,玻璃纤维、特氟龙(Teflon)等塑料到高强度合金(如P20和铬镍铁合金)的深孔加工。在公差和表面粗糙度要求较严的
4、深孔加工中,枪钻可保证孔的尺寸精度、位置精度和直线度。标准枪钻可加工孔径为1.5mm到76.2mm的孔,钻削深度可达直径的100倍。三、内排屑深孔钻(BTA)内排屑深孔钻(BTA)较适宜加工直径在20 mm以上长径比不大于100的中等尺寸精密深孔的加工,其加工精度为IT7级一IT10级,加工表面的表面粗糙度为Ra 3.2m- Ra1.6m,如汽轮机大螺栓和蒸发器管板等的深孔加工。BTA钻加工原理:高压切削液(约2MPa-6MPa)由钻杆外圆和工件孔壁间的空隙注入,切屑随同切削液由钻杆的中心孔排出,故名内排屑。内排屑深孔钻一般用于加工深5mm-120mm,长径比小于100,表面粗糙度Ra3.2m
5、,IT3-IT9级的深孔,由于钻杆为圆形,刚性较好,且切屑不与工件孔壁摩擦,故生产率和加工质量均较外排屑有所提高。从加工原理可以看出,与枪钻相比,BTA法采用圆形钻杆,因此抗扭性好,可以采用较大的进给量进行切削。另外由于切屑是从钻杆的内孔中排出,不会划伤已加工表面,BTA法钻孔的主要缺点是:必须使用专用的机床设备,机床还须设置一个油液切屑分离装置,通过重力沉淀或电磁分离手段,使切削液分离并循环利用。另外在切削过程中,工件与授油器之间形成一个高压区,所以在钻削之前必须在工件与授油器间形成可靠的密封。四、喷吸钻内排屑深孔钻系统存在着环形油液通道损失大的缺点,加工时需采用较高的压力和流速,为此,人们
6、研制出一种生产效率高、加工质量好的钻削技术-喷吸钻,它是用于加工长径比不超过100、直径为16 mm-65 mm的孔,精度在IT9级-IT11级,加工表面粗糙度在Ra3.2m-Ra0.8m之间。喷吸钻采用两根同心的钻杆,通过连接器将刀具连接到机床上,切削液流入外钻杆与内钻杆之间,大部分切削液流向切削区域,而小部分切削液高速从内钻杆尾部的月牙槽流出,在钻杆尾部形成一个低压区,从而使切屑能迅速排出。五、插铣如果人们想加工一个小于0.002英寸的孔而又没有直径小于0.002英寸的标准微型钻头时,该怎么解决呢?其实这个时候可以选择用微型端铣刀来冲孔,现在市面上可以提供最小5微米的端铣刀。但是这种做法却
7、有一个大的弊端,就是这样加工的孔不能太深,因为刀具体不长,没有大的深度直径比率。因此一把直径为0.001英寸的端铣刀只能加工最深0.02英寸的孔。然而同样直径的钻头可以加工得更深,因为钻头的设计使载荷全部作用在刀尖上,进而传递到刀柄上使钻头钻的更深。虽然端铣刀存在弊端,但在对孔的深度没有要求而又急需的情况下,用微型端铣刀插铣微小孔是个非常可行的方法。超声波加工机械加工中往往会遇到细长孔加工,细长孔加工相当困难,特别是对于尺寸精度和几何公差要求高以及表面粗糙度值较小的细长孔加工;因此使用传统车削和研磨加工的难度就更为突显。为了有效地解决这一加工难题,设计了一款冷挤压刀具,通过冷挤压加工,使工件达
8、到了精度要求,同时工件表面发生了金相变形,使强度和硬度均优于工件原金相组织结构,在提高产品使用寿命的同时也提高了生产效率。1.超声孔加工技术特别适合加工硬度高,易脆等难加工材料,对不导电的难加工材料也具有很大的加工能力。2.应用范围广,可加工通孔、盲孔、形腔及深孔等。3.生产效率高,排屑容易,可一次进刀完成,易实现自动控制。4.加工精度高,表面质量高,一般来说,尺寸精度比常规钻孔提高1-2级,表面粗糙度降低3级或更低,而且圆度,同轴度误差较小。5.光整强化还可提高表面显微硬度,内表面可形成网状纹络,以适合特别需要,并可部分代替精车、磨削及抛光等精加工。电火花加工电火花细微孔加工的加工机理与常规
9、电火花加工机理相同,都是利用电蚀作用来去除材料达到加工的目的。但它又有自身的工艺特点。首先由于被加工的孔径细微,一般是直径0.1mm以下,因此要达到微米级的加工尺寸精度及表面精度,必须减少每个脉冲的放电能量,使加工的蚀除量很小。一般放电能量应在10-6-10-7 J焦耳数量级之间,这样才有可能做到电蚀坑直径小于1m,深度小于0.lm。其次,加工的孔径细微,要求的电极端面放电间隙大约在lm左右,当孔深较大时会使放电区内工作液循环困难,排屑能力差,稳定的放电间隙范围小,且容易受其它工艺参数的影响。另外细微孔加工是成型加工,其工具电极也同样是很细微的,当孔的深径比较大时,放电的异常很容易烧毁工具电极
10、,造成加工不能继续进行,除了这些外,还有工具电极制作困难,工作液性能特殊,机械部件精度高及检验困难等工艺特点。细长孔加工新工艺拉镗该技术已经能够达到加工直径44.5内孔时,在1.2-1.5 m/s的切削速度下保证内孔粗糙度3.2以上。激光加工激光打孔是激光微细加工领域的一个重要研究方向,其中准分子激光微孔加工法在微孔加工领域中占有重要地位,而且也得到越来越多的应用。准分子激光是以准分子气体作为激活介质而产生的激光。准分子激光属于紫外波段,波长短,适于高精度的微细加工。准分子激光加工具有加工质量好,精度高,加工形状可自由设定等特点,能完成激光热加工所不能完成的工作,在微细加工,脆细材料和高分子材
11、料加工等方面具有无可比拟的优越性。但是,准分子激光的光束质量如光斑大,发散角大等特点对微孔加工质量形成了一定得限制。最大的问题是能量利用率低,这会造成加工周期长,浪费资源严重。根据其适用范围的不同,冷却钻头钻孔,插铣法冲孔,电火花微孔加工,激光微孔加工都有一定得应用场合。在微孔加工时,可以适当的选用相应的方法。附:钻头内冷却孔的加工方法一般说来,硬质合金是在粉末定模时就加了芯材的,然后根据热熔型不同,后抽芯材。 而西方市场上还有高速钢及粉末高速钢内冷却刀具,他们的加工技术比较复杂,采取的是加芯材,热压冷拔,抽芯材,热旋加螺旋度的方式。 从产品应用上,内冷却有钻头和丝锥还有铰刀。丝锥是单孔,就高速钢来说,大口径的可以是枪钻或电火花解决,小口径的如外径6的就很难解决。一种是孔用蜡:生产加工硬质合金圆棒制造是先将钨粉挤压制成圆棒,中间的内冷孔是蜡然后成型,脱蜡、真空烧结成型就成为合金黑皮,分单直孔、双直孔,单螺旋孔和双螺旋孔;主要用于制造钻头和铣刀;一种是铜锡合金的线:直径从0点几到25MM左右,粉料在研磨后制成坯(棒料)之前把合金线一同挤压成毛坯的棒材,经过高温的烧结,大概温度在1200多度,铜锡线自然融化,就变成螺旋的孔了。