1、证券投资摘 要总体来讲,摘要分为开头、过程、结尾、关键词4部分。证券投资是狭义的投资,是指企业或个人购买有价证券,借以获得收益的行为。证券投资的分析方法主要有:基本分析法,技术分析法、演化分析法,其中基本分析主要应用于投资物的选择上,技术分析和演化分析则主要应用于具体投资操作的时间和空间判断上,作为提高证券投资分析有效性和可靠性的有益补充。它们之间既相互联系,又有重要区别。相互联系之处在于:技术分析要有基本分析的支持,才可避免缘木求鱼,而技术分析和基本分析要纳入演化分析的框架,才能真正提高可持续生存能力!重要区别在于:技术分析派认为市场是对的,股价走势已经包含了所有有用的信息,其基本思路和策略
2、是“顺势而为并及时纠错”;基本分析派认为他们自己的分析是对的,市场出错会经常发生,其基本思路和策略是“低价买入并长期持有”;演化分析派则认为市场和投资者的对与错,无论在时间还是空间上,都不存在绝对、统一、可量化的衡量标准,而是复杂交织并不断演化的,其基本思路和策略是“一切以市场生态环境为前提”。对于该经理根据现有投资趋势,为解决投资方案问题,运用连续性投资模型,根据所给的客观的条件,来确定各种投资方案,并利用线性规划模型进行选择方案,以获得最大的收益。问题一,该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本,我们可以在所提出的假设都成立的前提下(尤其是假设所借贷资金所要支付
3、的利息不会随时间增长,直接等于所给的利率乘上借贷资金)以及综合考虑约束资金和限制条件,将1000万元的资金按照一定的比例分别投资个各种证劵。而该如何分配呢?怎样地分配才是最合理的呢?我们通过建立一个线性规划模型来解决这个问题。由所给的表格知证劵A(市政),B(代办机构),C(政府),D(政府),E(市政)的信用等级分别为2,2,1,1,5,到期年限分别为9,15,4,3,2,1,到期税前收益(%)分别为4.3,5.4,5.0,4.4,4.5(市政证劵的收益可以免税,其他的收益按50%的税率纳税)以及政府及代办机构的证券总共至少要购进400万元,所购证券的平均信用等级不超过1.4(信用等级数字越
4、小,信用程度越高),所购证券的平均到期年限不超过5年这三个约束条件,不妨设投资证劵A,B,C,D,E的金额分别为x1,x2,x3,x4,x5,建立线性规划模型,用lingo或者lindo软件求解即可得出最优投资方案和最大利润。问题二中的解决方法和问题一中的解决方法是一样的,只不过在求解时需要进行灵敏度分析利用问题一的模型,把借贷的1百万元在投资后所获得的收益与借贷所要付出的利息作比较,即与2.75%的利率借到的1百万元资金的利息比较,若大于,则应借贷;反之,则不借贷。若借贷,投资方案需将问题一模型的第二个约束条件右端10改为11,用lingo软件求解即可得出最优方案以及最大收益。而对问题三,是
5、否该改变要看最优解是否改变,如果各证劵所对应的字数在最优解不变的条件下目标函数允许的变化范围内,则不应该改变投资方案,反之则改变投资方案。即证劵A所对应的系数只取决于到期税前收益,而证劵C所对应的系数取决于到期税前收益和其收益所需的税额。同样的通过在问题一的灵敏度分析结果中可以知道最优解不变的条件下目标函数系数所允许的变化范围,根据题中证劵A和证劵C所对应的系数系数改变即可决定投资方案是否应改变一. 问题重述证券投资(investment in securities)是指投资者(法人或自然人)买卖股票、债券、基金券等有价证券以及这些有价证券的衍生品,以获取差价、利息及资本利得的投资行为和投资过
6、程,是间接投资的重要形式。为了实现证券投资的有效组合(降低风险和收益最大化),银行要有正确的投资决策:1、时机决策(国际、国内形势、行市态势、经济发展)2、种类选择质量高、收益丰厚、期限短、变现能力强;3、数量决定某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限如表1所示。按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。此外还有以下限制:(1)政府及代办机构的证券总共至少要购进400万元;(2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);(3)所购证券的平均到期年限不超过5年。二.问题分析1.1 概 论这是一个数
7、学规划模型,这个优化问题的目标是使投资收益最大,要做的决策是投资计划,即分别投资A、B、C、D、E五种证券各多少。决策受到三个条件的限制:政府及代办机构的证券购买、平均信用等级、平均到期年限。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来。2.2 问题一(1)若该经理有1000万元资金,应如何投资?2.3问题二(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?2.4 问题三(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?三.模型假设(1)假设该投资为连续性投资,即该经
8、理投资不会受到年限过长而导致资金周转困难的影响;(2)假设证劵税收政策稳定不变而且该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本;(3)假设各证劵之间相互独立而且各自的风险损失率为零。(4)假设在经理投资之后,各证劵的信用等级、到期年限都没有发生改变;(5)假设投资不需要任何交易费或者交易费远远少于投资金额和所获得的收益,可以忽略不计;(6)假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资金四、 符号说明X1:投资证劵A的金额(百万元);X2:投资证劵A的金额(百万元);X3:投资证劵A的金额(百万元);X4:投资证劵A的金额(百万元);X5:投资
9、证劵A的金额(百万元);Y:投资之后所获得的总收益(百万元);五、 模型的建立与求解问题一的求解: 在提出的假设条件成立的前提下,根据题目给出的限制条件以及各种证劵的信息(政府及代办机构的证劵总共至少要购进4百万元;所购证劵的平均信用等级不超过1.4;所购证劵的平均到期年限不超过5年),设投资证劵A、证劵B、证劵C、证劵D、证劵E的金额分别为:X1、X2、X3、X4、X5(百万元),投资之后获得的总收益为Y百万元。对于平均信用等级和平均到期年限的求解,我们可以用加权算术平均值的算法求得,即用各个信用等级(平均到期年限)乘以相应的权,然后相加,所得之和再除以所有的权之和。在1000万元的资金约束
10、条件下,另外考虑到证劵B、C、D的收益都需按照50%的税率纳税,我们可以建立如下的线性规划模型: Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5S.t.X2+X3+X4=4X1+X2+X3+X4+X5=10(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)=1.4(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)=4X1+X2+X3+X4+X5=106X1+6X2-4X3-X4+36X5=04X1+10X2-X3-2X4-3X5=4X1+X2+X3+X4+X5=11
11、(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)=1.4(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)=4X1+X2+X3+X4+X5=116X1+6X2-4X3-X4+36X5=04X1+10X2-X3-2X4-3X5=4;x1+x2+x3+x4+x5=10;6*x1+6*x2-4*x3-4*x4+36*x5=0;4*x1+10*x2-x3-2*x4-3*x5=4;x1+x2+x3+x4+x5=11;6*x1+6*x2-4*x3-4*x4+36*x5=0;4*x1+10*x2-x3-2*x4-3*x5=0;运行结果: Global o
12、ptimal solution found. Objective value: 0.3282000 Total solver iterations: 0 Variable Value Reduced Cost X1 2.400000 0.000000 X2 0.000000 0.3018182E-01 X3 8.100000 0.000000 X4 0.000000 0.6363636E-03 X5 0.5000000 0.000000 Row Slack or Surplus Dual Price 1 0.3282000 1.000000 2 4.100000 0.000000 3 0.000000 0.2983636E-01 4 0.000000 0.6181818E-03 5 0.000000 0.2363636E-02