1、高中物理相互作用常见题型及答题技巧及练习题( 含答案 ) 含解析一、高中物理精讲专题测试相互作用1 如图所示,质量的木块A 套在水平杆上,并用轻绳将木块与质量的小球 B 相连 .今用跟水平方向成角的力,拉着球带动木块一起向右匀速运动,运动中 M、 m 相对位置保持不变,取.求:(1)运动过程中轻绳与水平方向夹角;(2)木块与水平杆间的动摩擦因数为.(3)当 为多大时 ,使球和木块一起向右匀速运动的拉力最小?【答案】 (1) 30( 2) = ( 3) =arctan【解析】【详解】(1)对小球B 进行受力分析,设细绳对N 的拉力为T 由平衡条件可得:Fcos30 =Tcos Fsin30 +T
2、sin =mg代入数据解得:T=10, tan = ,即: =30(2)对 M 进行受力分析,由平衡条件有FN=Tsin +Mgf=Tcos f= FN解得: (3)对 M、 N 整体进行受力分析,由平衡条件有:FN+Fsin =(M+m ) gf=Fcos =NF联立得: Fcos=( M+m ) g-Fsin 解得: F令: sin , cos=,即: tan =则:所以:当 +=90时F 有最小值所以: tan =时 F 的值最小即: =arctan 【点睛】本题为平衡条件的应用问题,选择好合适的研究对象受力分析后应用平衡条件求解即可,难点在于研究对象的选择和应用数学方法讨论拉力F 的最
3、小值,难度不小,需要细细品味2 如图所示,两个正三棱柱A、 B 紧靠着静止于水平地面上,三棱柱的中间有一个半径为R的光滑圆柱C, C的质量为2m, A、 B的质量均为m.A 、 B 与地面的动摩擦因数为. 设最大静摩擦力等于滑动摩擦力,重力加速度为g.(1) 三者均静止时 A 对 C 的支持力为多大?(2)A 、 B 若能保持不动, 应该满足什么条件?(3) 若 C 受到经过其轴线竖直向下的外力而缓慢下降到地面,求该过程中摩擦力对A 做的功【答案】 (1) FN 2mg.(2)3mgR. (3).23【解析】【分析】(1)对 C进行受力分析,根据平衡求解A 对 C 的支持力;(2) A 保持静
4、止,则地面对A 的最大静摩擦力要大于等于C 对 A 的压力在水平方向的分力,据此求得动摩擦因数 应该满足的条件;(3) C 缓慢下落同时 A、 B 也缓慢且对称地向左右分开,A 受力平衡,根据平衡条件求解滑动摩擦力大小,根据几何关系得到A 运动的位移,再根据功的计算公式求解摩擦力做的功【详解】(1) C 受力平衡, 2FNcos60 2mg解得 FN 2mg(2) 如图所示, A 受力平衡 F 地 FNcos60 mg2mg f FNsin60 3 mg因为 f F地,所以 32(3) C 缓慢下降的同时A、 B 也缓慢且对称地向左右分开A 的受力依然为4 个,如图所图,但除了重力之外的其他力
5、的大小发生改变,f 也成了滑动摩擦力A 受力平衡知F地FNcos60mgf FNsin60 F地3 mg解得 f 3即要求 3 0,与本题第 (2)问不矛盾由几何关系知:当C 下落地地面时, A 向左移动的水平距离为x3 R3所以摩擦力的功mgRW f x3【点睛】本题主要是考查了共点力的平衡问题,解答此类问题的一般步骤是:确定研究对象、进行受力分析、利用平行四边形法则进行力的合成或者是正交分解法进行力的分解,然后在坐标轴上建立平衡方程进行解答3 如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy,其坐标原点O 与平台右侧距离为d=1.
6、2m 。平台足够宽,高为 h=0.8m ,长为 L=3.3m。一个质量m1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达 O 点时,给小球施加一个沿y 轴正方向的水平力 F1,且 F1=5y( N)。经一段时间,小球到达平台上坐标为(1.2m , 0.8m)的 P 点时,撤去外力 F1。在小球到达 P 点的同时,平台与地面相交处最内侧的M 点,一个质量 m2=0.2kg 的滑块以速度 v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, g1
7、0m / s2 , sin370.6, cos370.8 。求:( 1)小球到达 P 点时的速度大小和方向;( 2) M 、N 两点间的距离 s 和滑块速度 v 的大小;( 3)外力 F2 最小值的大小(结果可用根式表示)【答案】( 1) 5m/s 方向与 x 轴正方向成53( 2)1.5m ; 3.75m/s (3) 25 N5【解析】( 1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直线运动和沿y 轴方向的变加速运动,设小球在P 点受到 vp 与 x 轴夹角为50.81.6 J从 O 点到 P 点,变力 F1 做功 y p0.8J2根据动能定理有 W1 m1vP21 m1v02 ,
8、解得 vp5m / s22根据速度的合成与分解有 v0vp cos,得53,小球到达 P 点时速度与 x 轴正方向成53(2)小球离开 P 点后做平抛运动,根据平抛运动规律有h1gt 2 ,解得 t=0.4s2小球位移在水平面内投影 lvp t2m设 P 点在地面的投影为P ,则 P MLyP2.5m由几何关系可得 s2P M 2l 22lP Mcos,解得 s=1.5m滑块要与小球相遇,必须沿MN 连线运动,由 s vt ,得 v3.75m / s(3)设外力 F2 的方向与滑块运动方向(水平方向)的夹角为,根据平衡条件水平方向有:F2 cosf ,其中 fN ,竖直方向有 NF2sinm2
9、 g联立解得 F2m2 gcossin由数学知识可得F2m2 g,其最小值 F2minm2 g2 522N 。1sin154 如图所示,两足够长的平行光滑的金属导轨MN、 PQ 相距为L1 m,导轨平面与水平面夹角30,导轨电阻不计,磁感应强度为B12T的匀强磁场垂直导轨平面向上,长为L1 m的金属棒ab 垂直于MN、 PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m12 kg、电阻为R11,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为d0.5 m,定值电阻为R23 ,现闭合开关S 并将金属棒由静止释放,取g10 m/s 2,求:(1
10、)金属棒下滑的最大速度为多大?(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率为多少?( 3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场,在下板的右端且非常靠近下板的位置处有一质量为q1 10 4 kg、所带电荷量为C 的液滴以初速度水平向左射入两板间,该液滴可视为质点,要使带电粒子能从金属板间射出,初速度应满足什么条件?【答案】( 1) 10m/s (2) 100W( 3) v0.25m/s或 v0.5m/s【 解 析 】 试 题 分 析 : ( 1 ) 当 金 属 棒 匀速 下 滑 时 速 度 最 大 , 设 最 大速 度vm , 则 有m1 gsinF
11、安F 安 =B1ILI B1Lvm R1 R2所以 vmm1 gsin R1R2B12L2代入数据解得: vm=10m/s(2)金属棒匀速下滑时,动能不变,重力势能减小,此过程中重力势能转化为电能,重力做功的功率等于整个电路消耗的电功率P=m1gsin vm=100W ( 或)(3)金属棒下滑稳定时,两板间电压U=IR2=15V因为液滴在两板间有 m2 gUq所以该液滴在两平行金属板间做匀速圆周运动d当液滴恰从上板左端边缘射出时:r1dm2 v11B2 q所以 v =0.5m/s当液滴恰从上板右侧边缘射出时:r2dm2v2所以 v2=0.25m/s2B2q初速度 v 应满足的条件是:v0.25
12、m/s或 v0.5m/s考点:法拉第电磁感应定律;物体的平衡;带电粒子在匀强磁场中的运动视频5如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为d=05m ,上半段d 导轨光滑,下半段d 导轨的动摩擦因素为.L=0 2m,长为 2d,3 ,导轨平面与水平6面的夹角为=30匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直质量为m=0 2kg 的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3,导体棒的电阻为r=1 ,其他部分的电阻均不计,重力加速度取g=10m/s 2,求:( 1)导体棒到达轨道底端时的速度大小;( 2)导体
13、棒进入粗糙轨道前,通过电阻R 上的电量 q;( 3)整个运动过程中,电阻 R 产生的焦耳热 Q【答案】( 1) 2m/s( 2) 0 125C( 3) 0 2625J【解析】试题分析:( 1)导体棒在粗糙轨道上受力平衡:mgsin = mgcos +BILE=BLv解得: v=2m/s(2)进入粗糙导轨前:解得: q=0 125C(3)由动能定理得:考点:法拉第电磁感应定律;物体的平衡;动能定理【名师点睛】本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的6(14分 )如图所示,木板与水平地面间的
14、夹角可以随意改变,当 =30时,可视为质点的一小木块恰好能沿着木板匀速下滑。若让该小木块从木板的底端以大小恒定的初速率v0=10m/s 的速度沿木板向上运动,随着的改变,小物块沿木板滑行的距离化,重力加速度g=10m/s 2。 (结果可用根号表示)x 将发生变( 1)求小物块与木板间的动摩擦因数;( 2)当 角满足什么条件时,小物块沿木板滑行的距离最小,并求出此最小值。【答案】 (1)【解析】 分析:( 1)当( 2) 60;m , 木 受力分析:( 2 分)( 2 分) 摩擦因素:( 2 分)(2)当 化 ,木 的加速度a :( 2 分)木 的位移S :( 2 分)则令, 当时 s 最小,即
15、( 2 分)S 最小 考点:考 了牛 第二定律的 用点 :做本 的关 是 物体受力分析,找出 界状 , 7如 所示,一 角 =30的光滑足 斜面固定在水平面上,其 端固定一 度系数为 k=50N/m 的 簧, 簧的下端系一个 量 m=1kg 的小球,用一垂直于斜面的 板A 住小球,此 簧没有 生形 ,若 板A 以加速度 , 簧与斜面始 保持平行,g 取 10m/s 2求:a=4m/s 2 沿斜面向下匀加速运( 1)从开始运 到小球速度达最大 小球所 生位移的大小;( 2)从开始运 到小球与 板分离 所 的 【答案】( 1)从开始运 到小球速度达最大 小球所 生位移的大小是0.1m;(2)从开始
16、运 到小球与 板分离 所 的 是0.1s【解析】( 1)球和 板分离后做加速度减小的加速运 ,当加速度 零 ,速度最大,此 物体所受合力 零即 kxm=mgsin ,解得:(2) 球与 板分离 位移 从开始运 到分离的 程中,s, 的 t ,m受 直向下的重力,垂直斜面向上的支持力FN,沿斜面向上的挡板支持力F1和弹簧弹力 F根据牛顿第二定律有:mgsin -F-F1=ma,F=kx随着 x的增大, F增大, F1减小,保持 a不变,当m与挡板分离时,F1减小到零,则有:mgsin -kx=ma,又 x= at2联立解得: mgsin -k? at2=ma,所以经历的时间为:点睛:本题分析清楚
17、物体运动过程,抓住物体与挡板分离时的条件:小球与挡板间的弹力为零是解题的前提与关键,应用牛顿第二定律与运动学公式可以解题。8如图所示,质量为在足够长的木板A 静止在水平地面上,其上表面水平,木板 A 与地面间的动摩擦因数为,一个质量为的小物块B(可视为质点)静止于 A 的左端,小物块B 与木板 A 间的动摩擦因数为。现给小物块B 一个水平向右的初速度,大小为。求:木板A 与小物块B 在整个运动过程中位移大小之比(最大静摩擦力的大小等于滑动摩擦力的大小,取)。【答案】【解析】试题分析:分别以A、 B 为研究对象,受力分析,木板和物块的加速度大小分别为,由牛顿第二定律得:,假设经过秒 A、 B 共
18、速,共同速度设为,由匀变速直线运动的规律得:,解得:。共速过程中, A 的位移大小设为, B 的位移大小设为,则,解得:,。假设共速之后,A、 B 一起向右匀减速运动,木板和物块间的静摩擦力大小为,木板和物块的加速度大小分别为,由牛顿第二定律得:,解得:,假设成立,。A、 B 的总位移大小。设共速之后至A、 B 均静止, A 的位移设为, B 的位移设为,则。整个过程中A 的位移大小则。, B 的位移大小考点:牛顿第二定律;匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系【名师点睛】根据牛顿第二定律分别求出 A、 B 的加速度,结合运动学公式求出速度相同时, A、 B 的位移
19、大小,然后 A、 B 保持相对静止,一起做匀减速运动,再根据速度位移公式求出一起匀减速运动的位移,从而得出9在水平地面上有一质量为2kg 的物体,在水平拉力F 的作用下由静止开始运动,10s 后拉力大小减为零,该物体的运动速度随时间t 的变化规律如图所示(g 取 10m/s 2)求:( 1)前 10s 内物体的加速度和位移大小( 2)物体与地面之间的动摩擦因数( 3)物体受到的拉力 F 的大小;【答案】( 1) 0 8 m/s2; 40 米 ( 2) 0 2 ( 3) 5 6 牛【解析】试题分析:(1)前 10s 内物体的加速度前 10s 内物体的位移大小(2)撤去外力后的加速度根据牛顿定律解
20、得 =0 2( 3)有拉力作用时,根据牛顿定律:解得 F=5 6N考点:牛顿第二定律的应用【名师点睛】此题是牛顿第二定律的应用问题;关键是知道 v-t 线的斜率等于加速度, “面积”表示物体的位移;能根据牛顿第二定律求出加速度的表达式10 半圆形支架BAD,两细绳 OA 和 OB 结于圆心O,下端悬挂重为10 N 的物体, OA 与水平成 60 ,使 OA 绳固定不动,将OB 绳的 B 端沿半圆支架从水平位置逐渐向竖直的位置C移动的过程中,如图所示,请画出 OB 绳上拉力最小时 O 点的受力示意图,并标明各力的大小。【答案】【解析】【分析】【详解】对结点 O 受力分析如图:结点 O 始终处于平衡状态,所以 OB 绳和 OA 绳上的拉力的合力大小保持不变等于重力的大小 10N,方向始终是竖直向上。由图象知当OB 垂直于 OA 时, OB 的拉力最小为1mg sin3010N5N此时 OA 的拉力为mg cos305 3N因此 OB 绳上拉力最小时O 点的受力示意图如图: