1、热管的特性,结构与工作原理http:/china- 从热力学的角度来看,物体的吸热、放热是相对的,凡是有温差存在时,就必然发生热从高温处传递到低温处,这是自然界和工程技术领域中极普遍的一种现象,而热传递的方式有三种:辐射、对流、传导,其中以热传导为最快。1963年美国 Los Alamos 国家实验室的 G.M.Grover 发明了一种称作为热管的传热组件,它充分利用热传导原理与致冷介质快速热传递性质,透过热管将发热物体的热量迅速传递到体外,导热能力超过了任何已知金属的导热能力。热管的特性:1.热管传热能力高因为热管的传热主要靠工质相变过程中吸收释放气化潜热和蒸汽流的传热,所以它的传热能力较其
2、他导热材料高几十倍。2.热管的均温特性好热管工作时,管内蒸汽处于饱和状态,蒸汽流动和相变时的温差小,所以沿热管蒸发端表面的温度梯度很小,可自动地形成均匀的热流温度。3.具有可变热流密度的能力由于热管中的蒸发和冷凝空间是分开的,若在蒸发端输入高热流密度,则在冷凝端可得到低的输出热流密度,实现“热变压器”的作用。4.具有良好的恒温特性采用一种充有惰性气体的可控热管,当输入端的热量变化时,因蒸汽压力的变化使冷凝端的冷凝面积改变,以维持热源温度的恒定。 热管典型结构以及工作原理:热管由管壳吸液芯和工质组成,热管的工作段可分为蒸发段,绝热段和冷凝段三部分。当蒸发端收热时,通过管壁使浸透于细液芯中的工质蒸
3、发,蒸汽在蒸发和冷凝端之间所形成的压差作用下流向冷凝端,由于冷凝端受到冷却作用,蒸汽凝结为液体,释放汽化潜能。冷凝后的气体,靠吸液芯与液体相结合所产生的毛细力作用,将冷凝液输送回蒸发段,以形成工作循环。热管规格如下:直径 mm长度 mm 备注3 0-280 圆热管 烧结 / 铜网 4 0-280 圆热管 烧结 / 铜网 5 0-280 圆热管 烧结 / 铜网 6 0-280 圆热管 烧结 / 铜网 6.35 0-280 圆热管 烧结 / 铜网 8 0-280 圆热管 烧结 / 铜网 10 圆热管 底座 铜网 25.4 30-100 圆热管 底座 烧结 / 铜网 T=3 0-280 压扁 烧结
4、/ 铜网 T=4 0-280 压扁 烧结 / 铜网 T=5 0-280 压扁 烧结 / 铜网 热管工质特性如下表:工质名称 熔点 C 沸点 C 临界温度 C临界压力 Pa 工作温度范围 C 品质因数 N kW/m2甲 烷 -184 -161 -82 45X105 -173-100 氨 -78 -33 132 112.7X105-60 100 11.8X107氟里昂 21 -135 9 179 50.96X105-103 127 2.2X107氟里昂 11 -111 24 198 43.12X105-40120 1.2X107戊烷 -130 28 197 32.24X105-20120 1.6X
5、107氟里昂 113 -35 48 197 53.9X105-10100 7.3X107丙酮 -95 57 237 47.04X1050-120 3.2X107甲醇 -98 64 240 78.4X10510-130 4.7X107乙醇 78 243 61.74X1050-130 2.9X107庚醇 -90 98 267 26.46X1050-150 1.2X107水 0 100 374 219.52X10530-200 4.6X107导热姆 A 12 257 150-395 1.9X107液芯类型:单层.多层丝网格吸液芯,烧结粉末吸液芯,轴向槽道吸液芯,组合型吸液芯。 常用吸液芯特性如下表:
6、吸液芯型式 特征尺寸m 有效毛细孔径X10 -3m 最大提升高度 (100C 水 ),mm 渗透率 X10-10m2 30 目网芯 0.5X10-3 0.43 29 25 100 目网芯 0.14X10-3 0.12 104 1.8 200 目网芯 0.07X10-3 0.063 197 0.55 烧结毡或粉末 0.01-0.1 1250-125 0.1-10 轴向槽道 0.25-1.5 0.25-1.5 50-8 35-1250 金属纤维 0.01-0.05 125-350 0.1-0.5 热管折弯工艺:折 弯 规 格 管径(mm) 最小折弯 R (mm) 建议 R (mm)最小折弯角 建议
7、弯角 3 9 12 90 120 4 12 16 5 15 20 6 18 24 8 24 32 9 27 36 9.35 28 37 热管的传热原理及其应用特点 在众多的传热元件中,热管是人们所知的最有效的传热元件之一,它可将大量的热量通过其很小截面积远距离地传输而无需外加动力。国际上对热管技术的研究和应用是在20世纪60年代开始的。我国在这方面的研究起始于上世纪70年代,当时主要侧重的方向为电子器件冷却和空间飞行器上的应用。80年代初,我国的热管研究和开发重点转向节能和能源的合理利用,相继开发了热管气气换热器、热管余热锅炉、高温热管蒸汽发生器等各类热管产品。由于碳钢水重力热管的结构简单、价
8、格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。随着科学技术的不断提高,热管研究和应用的领域也在不断拓宽。目前,热管及热管换热器已广泛应用于石油、化工、动力、冶金、建材、轻工等领域的高效传热设备,以及电子装置芯片冷却、笔记本电脑CPU冷却及电路控制板等的冷却。目前,除微型热管已批量化、大规模生产外,工业中余热回收用的热管换热器由于各种设备规模、大小、使用情况的不同,几乎每台设备都根据设备的工艺条件、现场情况设计、制造。一、热管工作原理热管是一种具有高导热性能的传热元件,它通过在全封闭真空管壳内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可
9、远距离传热、可控制温度等一系列优点。由热管组成的热管换热器具有传热效率高、结构紧凑、流体阻损小、有利于控制露点腐蚀等优点。目前已广泛应用于冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中,作为废热回收和工艺过程中热能利用的节能设备,取得了显著的经济效益。 典型的重力热管如图所示,在密闭的管内先抽成真空,在此状态下充入适量工质,在热管的下端加热,工质吸收热量汽化为蒸汽,在微小的压差下,上升到热管上端,并向外界放出热量,凝结为液体。冷凝液在重力的作用下,沿热管内壁返回到受热段,并再次受热汽化,如此循环往复,连续不断的将热量由一端传向另一端。由于是相变传热,因此热管内热阻很小,热管的高导热能力
10、与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量,所以能以较小的温差获得较大的传热率,且结构简单,具有单向导热的特点,特别是由于热管的特有机理,使冷热流体间的热交换均在管外进行,这就可以方便地进行强化传热。此外,由于热管内部一般抽成真空,工质极易沸腾与蒸发,热管启动非常迅速。 热管这种传热元件,可以单根使用,也可以组合使用,根据用户现场的条件,配以相应的流通结构组合成各种形式换热器,热管换热器具有传热效率高、阻力损失小、结构紧凑、工作可靠和维护费用少等多种优点,它在空间技术、电子、冶金、动力、石油、化工等各种行业都得到了广泛的应用。二、热管换热器的类型与基本结构热管换热器属于热流
11、体与冷流体互不接触的表面式换热器。热管换热器显著的特点是:结构简单,换热效率高,在传递相同热量的条件下,热管换热器的金属耗量少于其他类型的换热器。换热流体通过换热器时的压力损失比其他换热器小,因而动力消耗也小。由于冷、热流体是通过热管换热器不同部位换热的,而热管元件相互又是独立的,因此即使有某根热管失效、穿孔也不会对冷、热流体间的隔离与换热有多少影响。此外,热管换热器可以方便地调整冷热侧换热面积比,从而可有效地避免腐蚀性气体的露点腐蚀。热管换热器的这些特点正越来越受到人们的重视,其用途亦日趋广泛。按照热流体和冷流体的状态,热管换热器可分为气气式、气-汽式、气液式、液液式、液气式。从热管换热器结
12、构形式来看,热管换热器又分为整体式、分离式和组合式:1、整体式热管换热器该换热器是由许多单根热管组成。热管数量的多少取决于换热量的大小。为了提高气体的换热系数,往往采取在管外加翅片的方法,这样可使所需要的热管数目大大减少。整体式热管换热器主要分为气气式、气汽式、气液式。(1)、热管式气气换热器主要由壳体、热管元件及冷、热流体进出接口组成。壳体是一个钢结构件,一侧为热流体通道,另一侧为冷流体通道,中间由管板分隔。壳体的上、下孔板与盖板间以及设备的两侧均设有保温层。上、下盖板是可拆卸结构,便于检修和更换热管。(2)、热管式气汽换热器(热管蒸汽发生器)系统该系统由两部分组成:热管蒸汽发生器,汽水分离
13、装置(汽包)。其中热管蒸汽发生器是一种新型的蒸汽发生装置,它以具有良好导热性能的热管作为传热元件。热管受热段采用高频焊接翅片来强化传热,因而整套装置传热效率高,设备结构紧凑,热流体流动阻力小,并且由于热管的存在使得水的受热及汽化均在烟道之外完成,而且汽水分离也在汽包中完成,这就不同于一般的烟道式余热锅炉。同时水套管与汽包之间用导管连接,管道可以任意调节长度,现场布置灵活,全套设备无转动部件,运行可靠,操作维修方便。2、分离式热管换热器(1)工作原理分离式热管也是利用工质的汽化-凝结来传递热量,只是将受热部分与放热部分分离开来,用蒸汽上升管与冷凝液下降管相联接,可应用于冷、热流体相距较远或冷、热
14、流体绝对不允许混合的场合。其工作原理如图所示。(2)设备的基本结构由通过热流体的换热器、冷流体的换热器及蒸汽上升管、冷凝液下降管组合而成。换热器主要由壳体和管束组成。壳体是一个钢结构件,它分别是热流体和冷流体的流通通道,壳体的上顶下底、两侧均设有内保温层。为了便于检修和观察积灰情况,及时清除积灰,接口处设有人孔,设备顶盖也可打开,用于检修和更换管束。每台壳体内均装有若干片彼此独立的管束。受热段和放热段相对应的各片管束通过蒸汽上升管和冷凝液下降管连接,构成各自独立的封闭系统。三、热管换热器的应用特点1、整体式换热器特点:(1)、传热效率高,热管的冷、热侧均可根据需要采用高频焊翅片强化传热,弥补一
15、般气气换热器换热系数低的弱点。(2)、有效地避免冷、热流体的串流,每根热管都是相对独立的密闭单元,冷、热流体都在管外流动,并由中间密封板严密的将冷、热流体隔开。(3)、有效的防止露点腐蚀,通过调整热管根数或调整热管冷热侧的传热面积比,使热管壁温提高到露点温度以上。(4)、有效的防止积灰,换热器设计可采用变截面结构,保证流体进出口等流速流动,达到自清灰的目的。(5)、无任何转动部件,没有附加动力消耗,不需要经常更换元件,即使有部分元件损坏,也不影响正常生产。(6)、单根热管的损坏不影响其它的热管,同时对整体换热效果的影响也可忽略不计。2、分离式热管换热器的特点:(1)、装置的受热段和放热段可视现
16、场情况而分开布置,可实现远距离传热,这就给工艺设计带来了较大的灵活性,也给装置的大型化、热能的综合利用以及热能利用系统的优化创造了良好的条件。(2)、工作介质的循环是依靠冷凝液的位差和密度差的作用,不需要外加动力,无机械运行部件,增加了设备的可靠性,也极大地减少了运营费用。(3)、放热段与受热段彼此独立,易于实现流体分割、密封、因而能适用于易燃易爆等危险性流体的换热,并且也可实现一种流体与多种流体的同时换热。(4)、受热段与放热段管束可根据冷、热流体的性能及工艺要求选择不同的结构参数和材质,从而可有效地解决设备的露点腐蚀和积灰问题。(5)、根据工艺要求,可以将流体顺、逆流混合布置,以适应较宽的
17、温度范围。(6)、系统换热元件由多片热管管束组成,各片之间相互独立,因此,其中一片甚至几片损坏或失效不会影响整个系统的安全运行。热管原理热管构造热管制作 热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电
18、机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。 从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端
19、,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成13(10负110负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另
20、端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液汽)分界面; (2)液体在蒸发段内的(液汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽液分界面上凝结: (5)热量从(汽液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。热管的基本特性 热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。 (3)很高的导热性 热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比
21、,单位重量的热管可多传递几个数量级的热量。当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。 (2)优良的等温性 热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。 (3)热流密度可变性 热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热
22、量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。 (4)热流方向酌可逆性 一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应器及其他装置。 (5)热二极管与热开关性能 热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。 (6)恒温特性(可控热管) 普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热
23、量变化时,热管备部分的温度亦随之变化。但人们发展了另一种热管可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。 (7)环境的适应性 热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。上图表示了热管管内汽-液交界面形状,蒸气质量流量,压力以及管壁温度 T w 和管内蒸气温度 T v 沿管长的变化趋势.沿整个热管长度
24、,汽-液交界处的汽相与液相之间的静压差都与该处的局部毛细压差相平衡。 Pc(毛细压头是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降 Pv,冷凝液体从冷凝段流回蒸发段的压力降Pl和重力场对液体流动的压力降(Pg可以是正值,是负值或为零,视热管在重力场中的位置而定)。因此, Pc Pl + P v + Pg是热管正常工作的必要备件。由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种。 (1)按照热管管内工作温度区分 热管可分为低温热管(2730)、常温热管(0250)、中温热管250450)、
25、高温热管(450一1000)等。 2)按照工作液体回流动力区分 热管可分为有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。 (3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为铜水热管、碳钢。水热管、铜钢复合水热管、铝丙酮热管、碳钢荣热管、不锈钢钠热管等等。 (4)按结构形式区分 可分为普通热管、分离式热管、毛纫泵回路热管、微型热管、平板热管、径向热管等。 (5)按热管的功用划分 可分为传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。热管的相容性及寿命 热管的相容性是指热管在预期的设计寿命
26、内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。相容性在热管的应用中具有重要的意义。只有长期相容性良好的热管,才能保证稳定的传热性能,长期的工作寿命及工业应用的可能性。碳钢水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。 影响热管寿命的因素很多,归结起来,造成效管不相容的主要形式有以下三方面,即:产生不凝性气体:工作液体热物性恶化:管壳材料的腐蚀、溶解。 (1)产生不凝性气体 由于工作液体与管完材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体
27、被蒸汽流吹扫到冲凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。 (2)工作液体物性恶化 有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。 (3)管壳材料的腐蚀、溶解、工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。这类现象常发生在碱金属高温热管中。 热管制造 1 热管零部件及其加工
28、 热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。不同类型的热管对这些零部件有不同的要求。 2 管壳 热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。管径可以从2mm到200mm,甚至更大。长度可以从几毫米到l00米以上。低温热管换热器的管材在国外大多采用铜、铝作为原料。采用有色金属作管材主要是为了满足与工作液体相容性的要求。 3 端盖 热管的端盖具有多种结构形式,它与热管舶连接方式也因结构形式而异。端盖外圆尺寸可稍小于管壳。配合后,管壳的突出部分
29、可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑乎整质量容易保证。 旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。 4 吸液芯结构 吸液芯是热管的一个重要组成部分。吸液芯的结构形式将直接影响到热管和热管换热器的性能。近年来随着热管技术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简赂的介绍。 1管芯型式 一个性能优良的管芯应具有: (1)足够大的毛细抽吸压力,或较小的管芯有效孔径 (2)较小的液体流动阻力,即有较高的渗透率 (3)良好的传热特性,即有小的径向热阻 (4)良好的工
30、艺重复性及可靠性,制造简单,价格便宜。 管芯的构造型式大致可分为以下几类: (1)紧贴管壁的单层及多层网芯此类管芯 多层网的网层之间应尽量紧贴,网与管壁之间亦应贴合良好,网层数有l至4层或更多,各层网的目数可相同或不同若网层多,则液体流通截面大,阻力小,但径向热阻大;用细网时毛细抽吸力大但流动阻力亦增加如在近壁因数层用粗孔网,表面一层用细孔网,这样可由表面细孔网提供较大的毛细抽吸压力,通道内的粗孔网使流动阻力较小,但并不能改善径向热胆大的缺点网芯式结构的管芯可得到较高的毛细力和较告的毛细提升高度,但因渗透率较低,液体回流阻力较大,热管的轴向传热能力受到限制此外其径向热阻较大,工艺重复性差又不能
31、适应管道弯曲的情况,故在细长热管中逐渐由其它管芯取代。 (2)烧结粉末管芯 由一定目数的金属粉末烧结在管内壁面而形成与管壁一体的烧结粉末管芯,也有用金属丝网烧结在管内壁面上的管芯此种管芯有较高的毛细抽吸力,并较大地改善了径向热阻,克服了网芯工艺重复性差的缺点,但因其渗透率较差,故轴向传热能力仍较轴向槽道管芯及干道式管芯的小 (3)轴向槽道式管芯 在管壳内壁开轴向细槽以提供毛细压力及液体回流通道,槽的截面形状可为矩形,梯形,圆形及变截面槽道,槽道式管芯虽然毛细压头较小,但液体流动阻力甚小,因此可达到较高的轴向传热能力,径向热阻较小,工艺重复性良好,可获得精确幼儿何参数,因而可较正确地计算毛细限,
32、此种管子弯曲后性能基本不变,但由于其抗重力工作能力极差,不适于倾斜(热端在上)工作对于空间的零重力条件则是非常适用的,因此广泛用于空间飞行器。 (4)组合管芯 一般管芯往往不能同时兼顾毛细抽吸力及渗透率为了有高的毛细抽吸力,就要选用更细的网成金属粉末,但它仍的渗透率较差,组合多层网虽然在这方面有所提高,可是其径向热阴大组合管芯跃能兼顾毛细力和渗透率,从而能获得高的轴向传热能力,而且大多数管芯的径向热阻甚小它基本上把管芯分成两部分一部分起毛细抽吸作用,另一部分起液体回流通道作用。 制造工艺 如前所述,构成热管的三个主要组成部分是管壳、管芯和工质。在设计过程中,对答壳和管芯的材料进行合理的选择后就
33、可以开始制作。通常热管的制造过程包括下面的工艺操作,并按一定的程序进行。1、机械加工2、清洗3、管芯制作4、清洗5、焊接6、检漏7、除气8、检漏9、充装10、封接11、烘烤12、检验实际制造的时候往往能达到20,甚至上百道的工序。这里只是最简单的一些必须工序。烧结式热管结构 烧结式热管,顾名思义,其毛细结构是通过高温下铜粉烧结制造而成的。我们最常见的水介质烧结式热管制造流程大致为:选取99.5纯度的铜粉,铜粉单体粒径一定要控制在75150微米。首先使用工具将外径5mm红铜管内部清除干净,去除毛刺,接着将铜管放到稀硫酸中使用超声波清洗。清洗干净之后我们将得到一根内外壁皆十分光滑、无氧化物的铜管。
34、此时将一根细钢棍插到铜管里(需要工具精确地将钢棍儿固定在铜管的中央,以方便铜粉均匀填充),将铜管底部用铜片暂时封闭。接着就可以把纯铜粉倒入铜管了。装填完毕之后就可以拿到烧结炉进行烧结。在烧结过程中,温度的把控也很重要。一般烧结炉峰值温度控制在800850度(根据热管产品要求的渗透率规定)。烧结完成之后使用一个辅助工具把铜管加紧,使用工具把钢棍抽出即可。严格按照上述流程制造的烧结式热管,每个部分的毛细结构渗透率都应该大致相同,铜粉烧结块分布厚度大致均匀。当我们拆开热管仔细观察,就可以发现该热管的烧结工艺是否过关了。小知识:这样的热管才算合格 一根热管的基本结构由容器、毛细结构和动作流体三部分组成
35、。很多人都对热管中装的东西很好奇。那么,热管中装载的到底是什么呢?一般来说,热管中的动作流体需要根据热管所工作的温度区间进行选择。对于PC散热,考虑到成本因素,厂商们一般选择的是纯水和部分添加剂。那么,一般热管要装进多少动作流体呢?动作流体装入量太少,会导致流体无法将毛细结构孔隙填充,造成热管蒸发端局部干燥。而动作流体装入过多,则会引发液体阻塞现象,导致冷凝端无法正常工作。因此,热管的直径、毛细结构孔隙率、热管长度都会直接影响到动作液体的填入量。一般来说,最常用的5mm外口径,3.6mm内径,长度为150mm的铜热管动作液体装填量为0.4毫升。区区0.4毫升的填充液,也使得我们有时候敲开热管之
36、后看不到液体的存在。其实看不到液体也没什么关系,在后面的文章里我们将教给大家一个最简单的热管有效性测试方法。 说完动作液体,咱们来看看热管的毛细结构。毛细结构是一根合格热管产品的核心。它主要有三个作用:一是提供冷凝端液体回流蒸发端的通道,二是提供内壁与液体/蒸气进行热传导的通道,三是提供液气产生毛细压力所必须的孔隙。咱们在电脑上能用到的毛细热管有两种结构:沟槽式和烧结式。沟槽式热管是热管毛细结构中比较制造简单的一种,采用整体成型工艺制造,成本是一般烧结式热管的2/3。沟槽式热管生产方便,但缺点十分明显。沟槽式热管对沟槽深度和宽度要求很高,而且其方向性很强。当热管出现大弯折的时候,沟槽式方向性的
37、特性就成了致命缺点,导致导热性能大幅度下跌。而烧结式热管则生产工艺相对比较复杂,成本也比较高。热管烧结对铜粉质量、纯度,单铜粉颗粒直径、烧结温度、烧结均匀度都提出了很高的要求。因此制造一根优异的烧结式热管并非容易的事情。不同工艺和成本制造的烧结热管,热传导能力也是不一样的,我们将在后面的测试中看到。 最后,我们简单了解一下热管直径和导热量、热阻之间的关系。以热管长度均为150mm计算,经过台湾有关权威机构测试,直径为3mm的热管其热阻值为0.33(测试物体温度变化区间6090度)。而直径为5mm的时候,热阻立刻降到了0.11,已经可以满足绝大部分场合对导热的要求了。而当热管直径扩大到8mm的时
38、候,热阻竟然达到了0.0625,这是大部分金属材质散热器难以企及的热阻。那么,不同直径的热管,最大导热量区别有多大呢?中国台湾省某研究所给出了一组参考数值。直径为3mm的正品热管,2.8个标准热传递周期中只能传递15W(15焦耳/s)的热量。而直径为5mm的热管,在1.8个热传递周期最大热量传递达到了45W,是3mm热管的3倍!而8mm的热管产品只需0.6个周期就可以传递高达80W的热量。如此高的传热量,如果没有良好的散热片设计和风扇配合,很容易导致热量无法正常发散。热管烧结铜层的物性量测 随著积体电路製造技术及单体功能的不断提升,以及使用者对於通讯影音產品功能的需求日增,高功率、小体积之电子
39、或电脑元件已成为目前电路设计及製造的趋势。由於电子產品藉由电能损益所散失的能量多以热能的型态转换发散,不良的散热设计即成为其失效及损害的主要因素。根据统计,工件工作温度每增加10,其MTBF(Mean time between failures)值就会缩短一半。因此,为改善电子元件之稳定性及寿命,散热设计成为电子元件製造业愈来愈重视的问题。 在电子装置的应用领域中,构装电子元件冷却技术的相关研究及发展,传统上是以散热片模组的设计利用自然对流(Natural convection)或强制对流(Forced convection)的手段为主1-4。於是,有研究者针对散热模组中的风扇结构进行实验及理
40、论分析5-7。近年来,由於高功率电子元件发展迅速,利用循环水冷散热,或是应用相变化之高焓差所製成的热管(Heat pipe)、均热片(Heat spreader)、及Vapor chamber等方法,逐渐引起產业界重视并积极投入人力研究8-12。 对於目前的桌上型电脑的CPU而言,铝或铜製散热片结合风扇之散热模组设计确是必备的散热技术。不过,随著笔记型电脑的发展及桌上型电脑CPU发热量的增加,目前的散热模组技术势将无法满足散热之需求,有必要开发新式的散热模组以因应未来之挑战。而在不同的散热方法中,热管因具有极高热传导率,故被视为是一个相当有潜力的传热元件。此乃由於热管内部的饱和液-汽相变化机制
41、,故使得热管的传热能力是同样尺寸铜金属的数十倍以上。利用热管作为热的传递元件时,具有反应迅速及热阻小之优点。因此,配合热管或其衍生產品所发展出的各型高性能散热模组,已逐渐被用於解决新一代电子產品中的散热问题。 热管最初的发展乃应用於太空技术。当系统处於太空中无重力之环境时,工作流体返回加热部无法依赖重力的作用,故必须利用毛细作用将液体送回。流体返回过程中不需从外部提供额外的电力,且因热管中央为中空的状态,整体的质量非常轻。热管不耗电且重量轻的特色,是应用於太空技术的主要理由。1966年,美国RCA公司首先将热管商品化,从此热管才广泛地应用於一般工业技术。目前,从事微热管研究的单位及製造的厂商,
42、大多集中在美国、欧洲及日本。国内从事研究的单位则包括台大、工研院能资所、清大、淡江、北科大、成大等。 大多数微热管的毛细结构均为沟槽或网目所组成的,早期仅Thermacore(USA)从事烧结式微热管的製造。Dunn和Ready13曾对各种常用的毛细结构进行比较,发现烧结式(Sintered)微热管的毛细力(热管工作的趋动力)比网目及沟槽大,而热阻则介於沟槽与网目之间。因此,烧结式微热管可以兼顾高热传量与低热阻的考量。由於烧结式微热管具有上述高热传量与低热阻的优点,应用在实际笔记型电脑的散热时,尤其具有显著的竞争力。 1994年,日本的Furukawa公司,正式将热管技术应用笔记型电脑中解决散
43、热问题。其所发展的结合金属板与单一热管而成的散热模组,至今已经被广泛採用於许多可携式的电子產品中。1998年,Namba14则採用多重并联的热管模组配合风扇藉以提升整体散热性能。时至今日,多重併联与将大直径的热管稍微压扁后再结合於设计散热模组中是目前工业界提昇热管模组热传量的主要作法。同年,Zuo与Dussinger15提出HPVCCP(Heat pipe vapor chamber cold plates)的散热模组概念,藉由二维数学模型发现其毛细界限与热阻值之间的相互关係,并将实际模组製造出来,以实验的方式比对理论数据。Thermacore公司则以数值模拟方式,在75W发热功率下对固定几何
44、尺寸进行探讨。其报告中指出,若在相同尺寸下比较,蒸汽式散热模组(Vapor thema-base)的热阻可降至传统铝挤型散热器的56左右。Yusuf等16於2000年时,将其设计的散热模组原型以风洞测试平臺进行试验,发现藉由调整蒸汽式散热模组几何尺寸与冷却风量大小,能使蒸汽式散热模组的热阻值下降至0.40.2/W。 有鑑於热管式及蒸汽式散热模组之应用潜力,本研究室拟建立相关散热模组的设计、製造与性能测试的相关先导性技术。探讨逆向热传实验方法应用於量测自製烧结铜层的孔隙率(Porosity)、渗透率(Permeability)、热容量(Thermal capacity)、及等效热传导係数(Eff
45、ective thermal conductivity)等物性,藉以评估烧结铜层之品质。 传统烧结材料之等效热传係数量测技术8-11,17多属稳态测试(Steady test)。此法皆需针对大尺寸之方块型或圆柱型之烧结样品进行量测,且费时较久。此外,烧结结构係为焊连於铜板上之薄层构造如图(一)所示,约 1mm厚,并非大尺寸之方块型或圆柱型之样品,故传统稳态测试法并不适用。实际上,现有量测方法中,亦无可用於薄层状烧结铜层之物性量测法,极有必要发展专用之实验技术。因此,本研究拟利用逆向理论(Inverse method),藉由量测烧结铜层外表面特定点温度值来同时估算其内部毛细结构层之等效热传係数和
46、热容量。逆向理论(Inverse method)应用於量测材料等效热传係数或热容量已发展近十餘年18,19。本研究室近年积极从事逆向热传研究,已发表8篇相关国际论文(例如参考文献20-22),并提出可同时预测等效热传係数、热容量、及对流係数之最佳化计算程序23。本研究重点在於应用逆向热传法则建立量测烧结层物性的技术,并组装一套完整的实验量测系统。由於本法係属暂态测试技巧,所需时间较短,且专用於薄层材料,故可用於準确量测不同孔隙率之烧结铜层的热物性,所得成果有助於热管式散热模组之性能确保及提升。图(一)暂态式逆向法量测烧结铜层之热传导係数之概念及其边界条件设定热管散热器的制造工艺和工程应用问题【