收藏 分享(赏)

2.3 逆矩阵公式和矩阵的秩.ppt

上传人:HR专家 文档编号:11607246 上传时间:2020-08-22 格式:PPT 页数:17 大小:296KB
下载 相关 举报
2.3 逆矩阵公式和矩阵的秩.ppt_第1页
第1页 / 共17页
2.3 逆矩阵公式和矩阵的秩.ppt_第2页
第2页 / 共17页
2.3 逆矩阵公式和矩阵的秩.ppt_第3页
第3页 / 共17页
2.3 逆矩阵公式和矩阵的秩.ppt_第4页
第4页 / 共17页
2.3 逆矩阵公式和矩阵的秩.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、2.3 逆矩阵公式和矩阵的秩,下页,铃,结束,返回,首页,对于n阶矩阵A 若行列式|A|=0 则称A是奇异的否则称A为非奇异的,定义22(非奇异矩阵),一、逆矩阵公式,定义23(伴随矩阵),定理2.5 设n阶矩阵A的伴随矩阵为A*,则,证明,定理2.6,证明:,定理2.6,证明:,逆矩阵的求法二:伴随矩阵法,下页,解,所以A可逆,又因为,5,2,1,10,2,2,7,2,1,解:,所以,又,于是,二、矩阵的秩,定义24(k阶子式) 设A是mn矩阵 从A中任取k行k列(kmin(m, n) 位于这些行和列的交叉处的元素 保持它们原来的相对位置所构成的k阶行列式 称为矩阵A的一个k阶子式,上页,下

2、页,铃,结束,返回,首页,定义25(矩阵的秩) 设A为mn矩阵 如果A中不为零的子式最高阶数为r 即存在r阶子式不为零 而任何r1阶子式皆为零 则称r为矩阵A的秩 记作秩(A)r或r(A)r 当AO时 规定r(A)0,矩阵的秩的简单性质 (1)r(A)r(AT) (2)对于mn矩阵A 有0r(A)min(m, n) 当r(A)min(m, n)时 称矩阵A为满秩矩阵,下页,定义212(矩阵的秩) 设A为mn矩阵 如果A中不为零的子式最高阶数为r 即存在r阶子式不为零 而任何r1阶子式皆为零 则称r为矩阵A的秩 记作秩(A)r或r(A)r 当AO时 规定r(A)0,上述矩阵都是满秩矩阵,下页,定

3、理27 矩阵经初等变换后 其秩不变,解,由定理25知 A的秩等于经初等变换后所求出的最后一矩阵的秩 而最后一矩阵的秩显然等于3 故r(A)3,思考,A的秩与最后一个阶梯形矩阵的非零行有什么关系?,下页,阶梯形矩阵的秩等于非零行的行数,解,最后一矩阵为阶梯形矩阵 有三个非零行 故r(A)3,下页,阶梯形矩阵的秩等于非零行的行数,解,最后一矩阵为阶梯形矩阵 有两个非零行 故r(A)2,下页,例4 设B为n阶非奇异矩阵 A为mn矩阵 试证 A与B之积的秩等于A的秩 即r(AB)r(A) (P60/2.18),因为B非奇异 故可表示成若干初等矩阵P1 P2 Ps之积 BP1P2 Ps 于是 ABAP1P2 Ps 这表示AB是A经s次初等变换后得出的 因而r(AB)r(A),证,结束,-作为定理来用,几个常用性质:P60,例5 设 是n阶矩阵 的伴随矩阵,,(2) 若,则,则,则,综上,,则 中元素全为0,即,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报