收藏 分享(赏)

同济大学高等数学第六版下册第十一章幂级数.ppt

上传人:HR专家 文档编号:11605970 上传时间:2020-08-19 格式:PPT 页数:33 大小:509KB
下载 相关 举报
同济大学高等数学第六版下册第十一章幂级数.ppt_第1页
第1页 / 共33页
同济大学高等数学第六版下册第十一章幂级数.ppt_第2页
第2页 / 共33页
同济大学高等数学第六版下册第十一章幂级数.ppt_第3页
第3页 / 共33页
同济大学高等数学第六版下册第十一章幂级数.ppt_第4页
第4页 / 共33页
同济大学高等数学第六版下册第十一章幂级数.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、1.定义:,幂 级 数,一、函数项级数的一般概念,2.收敛点与收敛域:,3.和函数:,(定义域是?),函数项级数的部分和,余项,注意,(x在收敛域上),函数项级数在某点x的收敛问题,实质上是数项级数的收敛问题.,解,由达朗贝尔判别法,原级数绝对收敛.,原级数发散.,收敛;,发散;,二、幂级数及其收敛性,1.定义:,2.收敛性:,证明,由(1)结论,几何说明,发散区域,发散区域,收敛区域,这是幂级数收敛的特性,推论,定义: 正数R称为幂级数的收敛半径.,称为幂级数的收敛区间,,收敛域 = 收敛区间 + 收敛的端点,可能是,规定,问题,如何求幂级数的收敛半径?,证明,由比值审敛法,定理证毕.,若,

2、在 x0 处收敛,则,在 x0 处发散,若,则,若,在 x0 处条件收敛,则,这是幂级数收敛的特性,注,利用该定理求收敛半径要求所有的,或只有有限个,例2 求下列幂级数的收敛区间:,解,该级数收敛,该级数发散,发散,收敛,故收敛区间为(0,1.,如缺项,,则,必不存在,,但幂级数并不是没有收敛半径,此时不能,套用定理,可考虑直接用比值法或根值法求收敛半径,例3,已知幂级数,的收敛半径R=1,求,的收敛半径,解,任取,由,收敛知,注:,由检比法易得,收敛,故由比较审敛法知,在,故收敛半径,内绝对收敛,注意收敛半径为1,并不意味着,三、幂级数的运算,1.代数运算性质:,(1) 加减法,(其中,(2) 乘法,(其中,(3) 除法,(相除后的收敛区间比原来两级数的收敛区间小得多),2.和函数的分析运算性质:,(收敛半径不变),(收敛半径不变),解,两边积分得,例5,求和函数,解,收敛域为,记,则,并求,的和,故,故,常用已知和函数的幂级数,记住几个常见级数的和,常数项级数求和的一种重要方法,幂级数法或Abel法,四、小结,1.函数项级数的概念:,2.幂级数的收敛性:,收敛半径R,3.幂级数的运算:,分析运算性质,思考题,幂级数逐项求导后,收敛半径不变,那么它的收敛域是否也不变?,思考题解答,不一定.,例,它们的收敛半径都是1,但它们的收敛域各是,练 习 题,练习题答案,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报