收藏 分享(赏)

《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt

上传人:无敌 文档编号:1159399 上传时间:2018-06-15 格式:PPT 页数:18 大小:727KB
下载 相关 举报
《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt_第1页
第1页 / 共18页
《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt_第2页
第2页 / 共18页
《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt_第3页
第3页 / 共18页
《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt_第4页
第4页 / 共18页
《圆锥曲线与方程》课件1(新人教a版选修1-1).ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、新课标人教版课件系列,高中数学选修1-1,2.4圆锥曲线与方程全章小结,复习目标,()求长轴与短轴之和为20,焦距为 的椭圆的标准方程_,和,(2)求与双曲线 有共同渐近线,且过点(-3, )的双曲线方程;,(3)一动圆和直线l:x=-2相切,并且经过点F(2,0),则圆心的轨迹方程是 ,课前热身,一、知识回顾,圆 锥 曲 线,椭圆,双曲线,抛物线,标准方程,几何性质,标准方程,几何性质,标准方程,几何性质,第二定义,第二定义,统一定义,综合应用,椭圆、双曲线、抛物线的标准方程和图形性质,椭圆、双曲线、抛物线的标准方程和图形性质,例1.求双曲线9y 16x =144的实半轴与虚半轴长,焦点坐标

2、,离心率及渐进线方程.,2,2,故 渐进线方程为:y=x,解:把方程化成标准方程: - =1,y16,x25,2,2,故 实半轴长a=4,虚半轴长b=3, c=16+9 =5.,_, e=,54,34,二、应用举例,例2.直线y=x-2与抛物线y2=2x相交于A、B 求证:OAOB。,证法1:将y=x-2代入y2=2x中,得 (x-2)2=2x,化简得 x2-6x+4=0,解得:,则:,OAOB,证法2:同证法1得方程 x2-6x+4=0,由一元二次方程根与系数的关系,可知,x1+x2=6, x1x2=4,OAOB,y1=x1-2 , y2=x2-2;,y1y2=(x1-2)(x2-2)=x1

3、x2-2(x1+x2)+4 =4-12+4=-4,例3.一圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线,解法1:如图:设动圆圆心为P(x,y),半径为R,两已知圆圆心为O1、O2。,分别将两已知圆的方程 x2+y2+6x+5=0 x2+y2-6x-91=0配方,得,(x+3)2+y2=4 (x-3)2+y2=100,当P与O1: (x+3)2+y2=4外切时,有 |O1P|=R+2 当P与O2: (x-3)2+y2=100内切时,有 |O2P|=10-R,、式两边分别相加,得 |O1P|+|O2P|=12,即,化简并整

4、理,得 3x2+4y2-108=0,即可得,所以,动圆圆心的轨迹是椭圆,它的长轴、短轴分别为,解法2:同解法1得方程,即,动圆圆心P(x,y)到点O1(-3,0)和点O2(3,0)距离的和是常数12,所以点P的轨迹是焦点为(-3,0)、(3,0),长轴长等于12的椭圆。于是可求出它的标准方程。,2c=6 ,2a=12 , c=3 , a=6 b2=36-9=27,于是得动圆圆心的轨迹方程为,这个动圆圆心的轨迹是椭圆,它的长轴、短轴分别为,三、课堂练习,1. 动点P 到直线 x+4=0 的距离减去它到点M(2,0)的距离之差等于2,则点P 的轨迹是 ( )A直线 B.椭圆 C.双曲线 D.抛物线

5、,D,2.P是双曲线 x2/4-y2=1 上任意一点,O为原点,则OP线段中点Q的轨迹方程是( ),3和圆x2+y2=1外切,且和x轴相切的动圆圆心O的轨迹方程是 。,x2=2|y|+1,B,做练习,3过点P( 0 , 4 )与抛物线y2=2x只有一个公共点的直线有 条。,4、直线 y=kx+1与焦点在x轴上的椭圆 x2/5+y2/m=1 总有公共点,则m的取值范围是 。,5、过点M(-2,0)的直线l与椭圆 x2+2y2=2 交于P1、P2两点,线段P1P2的中点为P,设直线 l 的斜率为k1(k10),直线OP的斜率为k2,则 k1k2 的值为 ( ),3,1,5),已知椭圆 中,F1、F2 分别为其 左、右焦点和点A ,试在椭圆上找一点 P,使(1) 取得最小值;(2) 取得最小值.,A,F1,F2,x,y,o,P,P,思考题,四、小结:1、本节课的重点是掌握圆锥曲线的定义及性质在解题中的应用,要注意两个定义的区别和联系。2、利用圆锥曲线的定义和性质解题时,要注意曲线之间的共性和个性。3、利用圆锥曲线的定义和性质解题时,要加强数形结合、化归思想的训练,以得到解题的最佳途径。,五、布置作业:,P80 A组 1 10 B组 2 5,补充:在ABC中,BC固定,顶点A移动设|BC|=m,当三个角,有满足条件|sinCsinB|=sinA时,求顶点A的轨迹方程,再见,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报