1、24(9分)如图,抛物线y=ax2+bx经过OAB的三个顶点,其中点A(1,),点B(3,),O为坐标原点(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且nm,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求BOC的大小及点C的坐标25(本题满分12分)如图,抛物线y=ax-1x-3(a0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使OCAOBC(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是
2、否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由26(13分)(2018临沂)如图,在平面直角坐标系中,ACB=90,OC=2OB,tanABC=2,点B的坐标为(1,0)抛物线y=x2+bx+c经过A、B两点(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12DE求点P的坐标;在直线PD上是否存在点M,使ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由28如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,O
3、1为ABC的外接圆,交抛物线于另一点D(1)求抛物线的解析式;(2)求cosCAB的值和O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足BMNBPC,请直接写出所有符合条件的点N的坐标22如图,已知抛物线y=ax2+bx+c(a0)经过点A(3,0),B(1,0),C(0,3)(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由24(12分)如图,抛物线y=ax2+bx
4、+c经过A(1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DEBC于E(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得CDE中有一个角与CFO相等?若存在,求点D的横坐标;若不存在,请说明理由24(11分)(2018泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,2),连接AE(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求ADE面积的最大值;(3)抛物线对称轴
5、上是否存在点P,使AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由25(12分)(2018潍坊)如图1,抛物线y1=ax212x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,34),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线P
6、R的解析式25(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a0)与x轴交于点A(4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,P与直线BC相切于点Q,与直线DE相切于点R求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,MN为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由26(14分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1
7、,2)且与x轴相切于点B(1)当x=2时,求P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合(4)当P的半径为1时,若P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图,求cosAPD的大小25.如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.(1)求的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与重
8、合).分别以、为斜边,在直线的同侧作等腰直角和等腰直角,连接,试确定面积最大时点的坐标.(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与相似,若存在,请直接写出点的坐标;若不存在,请说明理由.24(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx5交y轴于点A,交x轴于点B(5,0)和点C(1,0),过点A作ADx轴交抛物线于点D(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,ABP的面积最大,求出此时点P的坐标和ABP的最大面积25(12分)如图
9、,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5)矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0t5)(1)求出这条抛物线的表达式;(2)当t=0时,求SOBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0t5)的函数表达式,并求出
10、t为何值时S有最大值,最大值是多少?21(13分)如图,已知点A(1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使BQC=BAC?若存在,求出Q点坐标;若不存在,说明理由25(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值
11、时,PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由25(10分)如图1,已知二次函数y=ax2+x+c(a0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求此时点N的坐标15如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()Ay的最大值小于0B当x=0时,y的值大于1C当x=-1时,y的值大于1D当x=-3时,y的值小于0