1、设有矩阵,(mn),下列运算结果不是阶矩阵的是().A、BAB、ABC、D、设矩阵A可以左乘矩阵B,则().A、B、C、D、若|A|=0,则A=().A、0矩阵B、数字0C、不一定是0矩阵D、A中有零元素两个n阶初等矩阵的乘积为().A、初等矩阵B、单位矩阵C、可逆阵D、不可逆阵若mn阶矩阵A中的n个列线性无关,则A的秩().A、大于mB、大于nC、等于nD、等于n矩阵A经有限次初等行变换后变成矩阵B,则().A、A与B相似B、A与B不等价C、A与B相等D、r(A)=r(B)设mn阶矩阵A,B的秩分别为,则分块矩阵 (A,B)的秩r适合关系式().A、B、C、D、矩阵A经过初等变换后().A、
2、不改变它的秩B、改变它的秩C、改变它的行秩D、改变它的列秩设A为三阶方阵,且|A|=-2,则矩阵|A|A行列式|A|A|=( ).A、16B、-16C、8D、-8两矩阵A与B既可相加又可相乘的充要条件是( ).A、A、B是同阶方阵B、A的行数=B的行数C、A的列数=B的列数D、A的行数、列数分别等于B的行数、列数初等矩阵().A、相乘仍为初等阵B、相加仍为初等阵C、都可逆D、以上都不对线性方程组有解的充分必要条件是a=().A、B、-1C、D、1存在有限个初等矩阵,使是A为可逆矩阵的().A、必要条件B、充分条件C、充要条件D、无关条件矩阵A经过有限次初等行变换后变成矩阵B,则().A、r(A
3、)r(B)B、A与B相等C、A的行向量组与B的行向量组等价D、A与B不等价设,则向量组共有()个不同的极大无关组.A、1B、2C、3D、4设n阶矩阵A的秩为r,则结论( )成立.A、|A|0B、|A|=0C、rnD、已知矩阵则().A、0B、1C、2D、3设A、B均为n阶方阵,则必有().A、|A+B|=|A|+|B|B、AB=BAC、|AB|=|BA|D、若均为n阶可逆矩阵,则().A、B、C、D、阵的行向量组().A、一定线性无关B、一定线性相关C、不能确定D、以上都不对一个向量组若有两个或两个以上的极大无关组,则各个极大无关组所含向量个数必().A、不相等B、相等C、大于零且小于2D、大
4、于零且小于3设是齐次线性方程组的三个线性无关的解向量,则().A、一定是的基础解系B、不一定是的解C、不一定是的解D、有可能是的基础解系设A,B均为n阶矩阵,如果则必有().A、A=EB、B=0C、A=BD、AB=BA设n阶矩阵A,B,C满足ABC=E,则必有().A、ACB=EB、BAC=EC、CBA=ED、BCA=E设矩阵,则下列结论不正确的是().A、A是上三角矩阵B、A是下三角矩阵C、A是对称矩阵D、A是可逆矩阵设矩阵,则下列结论正确的是().A、A是上三角矩阵B、A是下三角矩阵C、A是对称矩阵D、A是对角矩阵已知,则A=().A、B、C、D、下列矩阵中,不是初等矩阵的是().A、B、
5、C、D、设是齐次线性方程组的二个线性无关的解向量,则().A、一定是的一个基础解系B、有可能是的一个基础解系C、不是的一个解D、不是的一个解设A为n阶方阵,且|A|=8,A*是A的伴随矩阵,则AA*是().A、数量矩阵B、单位矩阵C、三角矩阵若矩阵A中有一个r阶子式D0,且A中有一个含有D的r+1阶子式等于零,则一定有().A、B、设n阶方阵A可逆,数k0,则().A、B、C、D、给定矩阵,下列()运算可行.A、ACB、CBC、ABCD、AB-BC.=().A、B、C、D、一个n维向量组线性相关的充要条件是其中().A、含有零向量B、有两个向量的对应分量成比例C、有一个向量是其余向量的线性组合D、每一个向量是其余向量的线性组合设A与B都是n阶方阵,则r(A+B)().A、B、C、D、 ?若A为n阶可逆矩阵,下列各式正确的是().A、B、C、D、 C和D都不对若齐次线性方程组()有非零解,则()的系数行列式().A、等于1B、等于5C、等于零D、不等于零 D不对设A是mn矩阵,齐次线性方程组是非齐次线性方程组的导出组,则().A、仅有零解时,有唯一解B、有非零解时,有无穷多解C、有无穷多解时,仅有零解D、有无穷多解时,有非零解 C不对设向量可由向量组线性表示,则表示法唯一的充要条件是().A、全为非零向量 AB不对 选C或DB、全为零向量C、线性相关D、线性无关