1、第一章 绪论摄影测量与遥感的概念:摄影测量与遥感是对非接触传感器系统获得的影像及其数字表达进行记录、量测和解译,从而获得自然物体和环境的可靠信息的一门工艺、科学和技术。摄影测量与遥感的主要特点:在像片上进行量测和解译;无需接触物体本身,较少受自然和地理条件限制;可摄得瞬间的动态物体影像;像片及其它各类影像提供物体的大量几何信息和物理信息摄影测量学的三个发展阶段:模拟摄影测量(1851-1970)利用光学/机械投影方法实现摄影过程的反转。用两个/ 多个投影器模拟摄影机摄影时的位置和姿态,构成与实际地形表面成比例的几何模型,通过对该模型的量测得到地形图和各种专题图。解析摄影测量(1950-1980
2、)以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式来研究和确定被摄物体的形状、大小、位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。数字摄影测量(1970- 现在)基于摄影测量的基本原理,通过对所获取的数字/数字化影像进行处理,自动( 半自动)提取被摄对象用数字方式表达的几何与物理信息,从而获得各种形式的数字产品和目视化产品。摄影测量三个发展阶段的特点:摄影测量分类:按距离远近:航天摄影测量、航空摄影测量、地面摄影测量、近景摄影测量、显微摄影测量按用途:地形摄影测量、非地形摄影测量按处理手段:模拟摄影测量、解析摄影测量、数字摄影测量单像摄影测量的理论基础:共线方程
3、、共面条件摄影测量的任务: 地形测量领域 各种比例尺的地形图、专题图、特种地图、正射影像地图、景观图。 建立各种数据库。 提供地理信息系统和土地信息系统所需要的基础数据。 非地形测量领域 生物医学 公安侦破 古文物、古建筑 建筑物变形监测 军事侦察 矿山工程第二章 单张航摄像片解析航摄机主距:航空摄影机物镜中心至底片面的距离是固定值,常用 f 表示。摄影机的主距分为:长焦距(主距200 mm)中焦距(主距 100200mm)短焦距(主距l00mm)对应的像场角分为:常角(75以下 ) 宽角(75100) 特宽角(100以上)摄影比例尺:是指航摄像片上一线段为 l 与地面上相应线段的水平距 L
4、之比。由于摄影像片有倾角,地形有起伏,所以摄影比例尺在像片上处处不相等。我们一般指的摄影比例尺,是把摄影像片当作水平像片,地面取平均高程,这时像片上的一线段 l 与地面上相应线段的水平距 L 之比,称为摄影比例尺 1m,即Hflm1式中,f 为航摄机主距, H 为平均高程面的航摄高度,称为航高。空中摄影要按航摄计划要求进行。在整个摄区,飞机要按规定的航高和设计的方向呈直线飞行,并保持各航线的相互平行。 摄影比例尺 像片重叠度: 同一条航线内相邻像片之间的影像重叠称为航向重叠,重叠部分与整个像幅长的百分比称为重叠度,一般要求在 60%以上。相邻航线的重叠为旁向重叠,旁向重叠度保持在 24%以上。
5、保证像片立体量测与拼接。 空间摄影基线:控制像片重叠度时,将飞机视为匀速运动,每隔一定空间距离拍摄一张像片,摄站的间距称为空间摄影基线 B。 航线弯曲度:航线弯曲度是指偏离该直线最远的像主点到该直线垂距与航带两端像主点之间的直线距离的比,一般采用百分数表示. 航线的弯曲会影响到航向重叠、旁向重叠的一致性,如果弯曲太大,则可能会产生航摄漏洞,甚至影响摄影测量的作业。因此,航线弯曲度一般规定不得超过 3%; 像片旋角:像片上相邻像主点连线与同方向框标连线间的夹角称为像片旋角; 像片倾角:空中摄影采用竖直摄影方式,即摄影瞬间摄影机的主光轴近似与地面垂直,它偏离铅垂线的夹角应小于 3 度,夹角称为像片
6、倾角。航摄像片上特殊的点、线:设地面为 E,像片为 P(即像平面)两平面相交于直线 TT,称为迹线,即透视轴,平面夹角为像片倾角。摄影中心:影像是由地面上各点发出的光线通过航空摄影机物镜投射到底片感光层上形成的,这些光线会聚于物镜中心 S,称为摄影中心。中心投影像主点:通过摄影中心 S, 垂直于像平面 P 的直线 SO 称为主光轴,它与像平面 P 的交点 o 称为像主点。So 称为航摄机的主距 f。像底点:通过摄影中心 S 作地平面 E 的铅垂线 SN,称为主垂线,主垂线 SN 与像平面 P 的交点 n 称为像底点,与地面 E 的交点 N 称为地底点。SN 称为摄影航高 H。等角点:主光轴 S
7、oO 与主垂线 SnN 所夹的角 a,称为像片倾斜角。a 角的二等分线与像片交点 c 称为等角点。与 E 面的交点 C 称为等角点的共轭点。主纵线:通过主垂线 SnN 与主光轴 SoO 作一平面 W,此平面称为主垂面,既垂直于像平面 P, 又垂直于地面 E。主垂面 W 与像平面 P 的交线 VV,称为主纵线。主垂面 W 与地面 E 的交线V0V0,称为摄影方向线。摄影测量常用的坐标系:像方空间坐标系 (描述像点的位置 ) 像平面坐标系像平面坐标系用以表示像点在像平面上的位置,通常采用右手坐标系,x,y 轴的选择按需要而定,在解析和数字摄影测量中,常根据框标来确定像平面坐标系,称为像框标坐标系。
8、在摄影测量解析计算中,像点的坐标应采用以像主点为原点的像平面坐标系中的坐标。为此,当像主点与框标连线交点不重合时,须将像框标坐标系平移至像主点。当像主点在像框标坐标系中的坐标为(x0 ,y0) 时,则量测出的像点坐标 x,y 化算到以像主点为原点的像平面坐标系中的坐标为(xx0,y y0)。 像空间坐标系为了便于进行空间坐标的变换需要建立起描述像点在像空间位置的坐标系,即像空间坐标系。以摄影中心 S 为坐标原点,x ,y 轴与像平面坐标系的 x,y 轴平行,z 轴与主光轴重合,形成像空间右手直角坐标系 S-xyz。像点坐标表示为(x,y,-f ) 。像空间坐标系随着像片的空间位置而定,每张像片
9、的像空间坐标系不统一。 像空间辅助坐标系 此坐标系的原点为摄影中心 S,坐标轴系的选择视需要而定,通常有三种选取方法。其一是取铅垂方向为 Z 轴,航向为 X 轴,构成右手直角坐标系,见图(a)。其二是以每条航线内第一张像片的像空间坐标系作为像空间辅助坐标系,见图(b)。其三是以每个像片对的左片摄影中心为坐标原点,摄影基线方向为 X 轴,以摄影基线及左片主光轴构成的面作为 XZ 平面,构成右手直角坐标系,如图(c) 。用 S-XYZ 表示。物方空间坐标系 (描述地面点的位置 ) 摄影测量坐标系将像空间辅助坐标系 S-XYZ 沿着 Z 轴反方向平移至地面点 P,得到的坐标系 P-XpYpZp称为摄
10、影测量坐标系。由于它与像空间辅助坐标系平行,因此很容易由像点的像空间辅助坐标求得相应的地面点的摄影测量坐标。 地面测量坐标系地面测量坐标系通常指地图投影坐标系,也就是国家测图所采用的高斯克吕格 3带或 6带投影的平面直角坐标系和高程系,两者组成的空间直角坐标系是左手系用 T-XtYtZt表示。摄影测量方法求得的地面点坐标最后要以此坐标形式提供给用户使用。 地面摄影测量坐标系由于摄影测量坐标系采用的是右手系,而地面测量坐标系采用的是左手系,这给由摄影测量坐标到地面测量坐标的转换带来了困难,为此,在摄影测量坐标系与地面测量坐标系之间建立一种过渡性的坐标系,称为地面摄影测量坐标系,用 D-XtpYt
11、pZtp 表示,其坐标原点在测区内的某一地面点上,Xtp 轴与 Xp 轴方向大致一致,但为水平,Ztp 轴铅垂。构成右手直角坐标系。摄影测量中,首先将摄影测量坐标转换成地面摄影测量坐标,最后再转换成地面测量坐标。航摄像片的内、外方位元素:确定航空摄影瞬间摄影中心与像片在地面设定的空间坐标系中的位置与姿态,描述这些位置和姿态的参数称为像片的方位元素。 内方位元素:表示摄影中心与像片之间相关位置的参数包括三个参数,即摄影中心 S 到像片的垂距(主距)f 及像主点 O 在像框标坐标系中的坐标 x0,y0。内方位元素一般视为已知。 外方位元素:表示摄影中心和像片在地面坐标系中的位置和姿态参数。一张像片
12、的外方位元素包括六个参数,其中有三个是直线元素,用于描述摄影中心的空间坐标值,另外三个是角元素,用于表达像片面的空间姿态。 三个直线元素 Xs,Ys,Zs摄影中心 S 在地面空间坐标系中的坐标,通常选用地面摄影测量坐标系 三个角元素以 y 轴为主轴的 j-w-k 系统 以 x 轴为主轴的 w-j-k系统 以 Z 轴为主轴的 A-a-ku 系统空间直角坐标变换:像点空间直角坐标的旋转变换是指像空间辅助坐标与像空间坐标之间的变换。 fyxRfcbaZYX321321共线方程:它是摄影测量中最基本、最重要的公式。 )()()(333 222 111 sAsAsA sAsAsA ZcYbXafyx式中
13、:x,y 为以像主点为原点的像点坐标;XA,YA,ZA 为相应地面点坐标;f 为像片主距,影像的内方位元素 (x0 , y0 ),f;XS ,YS ,ZS 为摄影中心 S 的物方空间坐标;ai , bi , ci(i = 1, 2,3 )为影像的三个外方位角元素组成的九个方向余弦共线方程的逆算式: fcyxbZYfaXsAsAss 321321)(已知像点坐标及像片的内外方位元素,还不能计算地面点的三维坐标,只有同时知道地面点的高程时,才能确定地面点的平面位置,因此在摄影测量处理中,需要使用立体影像确定地面点三维坐标。共线条件方程的应用: 单像空间后方交会和多像空间前方交会; 解析空中三角测量
14、光束法平差中的基本数学模型; 构成数字投影的基础; 计算模拟影像数据(已知影像内外方位元素和物点坐标求像点坐标) ; 利用数字高程模型(DEM)与共线方程制作正射影像; 利用 DEM 与共线方程进行单幅影像测图等等。航摄像片是中心投影,它的特点是摄影光线均交于同一点 S ;地图是正射投影,所有投影光线相互平行并与投影面正交由于投影的差异,只有在地面水平(无高差) 且像片也水平 (即平行地面)时,这两种投影方无差异中心投影变换:将倾斜摄影的像片变为水平摄影的像片,是一种平面对平面的投影变换。这种将倾斜摄影的像片变为水平摄影的像片的过程,就称为中心投影变换。像片纠正:摄影测量中将任意倾角的像片变为
15、规定比例尺的水平像片(即规定比例尺的影像地图)。像点位移:地面点在地面水平的水平像片上的构像与地面有起伏时或倾斜像片上的构像的点位不同,这种点位差异称为像点位移。 因像片倾斜引起的像点位移 因地形起伏引起的像点位移 因物理因素引起的像点位移摄影物镜的畸变差,大气折光,地球曲率以及底片变形等。属于一种系统误差,很难用光学机械的方法模拟改正,但可以用数学模型来描述。像片比例尺:在航摄像片上某一线段影像的长度与地面上相应线段距离之比,就是像片上该线段的构像比例尺对于中心投影的航摄像片,只有当像片水平且地面也水平时,像片上任意线段的比例尺都相等。实际上由于存在像点位移,像片比例尺处处不等,是一个近似值
16、,称为主比例尺。 HfLlm1空间后方交会: 利用一定数量的地面控制点,根据共线方程,反求像片的外方位元素,这种方法称为单张像片的空间后方交会。已知像片的内方位元素和至少三个地面点坐标及像点坐标,则可列出至少六个方程式,解求出像片六个外方位元素。 在空间后方交会中,通常是在像片的四个角上选取四个或更多的地面控制点,因而要用最小二乘法平差计算。空间后方交会的求解过程:获取已知数据:从摄影资料中查取像片比例尺 1m、平均航高、内方位元素 x0,y0,f,从外业测量成果中,获取控制点的地面测量坐标 Xt,Yt,Zt,并转化成地面摄影测量坐标Xtp, Ytp,Ztp量测控制点的像点坐标:将控制点标刺在
17、像片上,利用立体坐标量测仪量测控制点的像框标坐标,并经像主点坐标改正,得到像点坐标 x ,y 。确定未知数的初始值:在竖直摄影情况下,角元素的初始值为 0,即 j 0w0k00;线元素中,ZS0H=mf,X S0,Y S0 的取值可用四个角上控制点坐标的平均值,即:4141,00 itpSitpS YX计算旋转矩阵 R:利用角元素的近似值计算方向余弦值,组成 R 阵。逐点计算像点坐标的近似值:利用未知数的近似值按共线方程计算控制点像点坐标的近似值(x);(y)。组成误差方程式:逐点计算误差方程式的系数和常数项。组成法方程式:计算法方程的系数矩阵 ATA 与常数项 ATL。解求外方位元素:根据法
18、方程,解求外方位元素改正数,并与相应的近似值求和,得到外方位元素新的近似值。检查计算是否收敛:将求得的外方位元素的改正数与规定的限差比较,小于限差则计算终止;否则用新的近似值重复 4-8 的计算,直到满足要求为止。第三章 双像解析摄影测量人体的立体视觉:单眼观察景物时,人们感觉到的仅是景物的透视像,好像一张像片一样,不能正确判断景物的远近。只有用双眼观察景物,才能判断景物的远近,得到景物的立体效应,这种现象称为人体的立体视觉。生理视差:由于交会角的差异,使得两弧长 ab 和 ab不相等,其差 s=ab-ab称为生理视差。生理视差是判断景物远近的根源。人造立体视觉条件:两张像片必须是在两个不同位
19、置对同一景物摄取的立体像对;每只眼睛必须只能观察像对的一张像片;两像片上相同景物(同名像点 )的连线与眼基线应大致平行;两像片的比例尺相近(差别 15) ,否则需用 ZOOM 系统等进行调节。双像解析摄影测量的三种方法:利用像片的空间后方交会与前方交会来解求地面目标的空间坐标。利用立体像对的内在几何关系,进行相对定向,建立与地面相似的立体模型,计算出模型点的空间坐标。再通过绝对定向,将模型进行平移、旋转、缩放,把模型纳入到规定的地面坐标系之中,解求出地面目标的绝对空间坐标。利用光束法双像解析摄影测量来解求地面目标的空间坐标。这种方法将待求点与已知外业控制点同时列出误差方程式,统一进行平差解求。
20、这种方法理论较为严密,它把前面两种方法的两种步骤合在一个整体内。三种方法的比较分析:第一种方法前交的结果依赖于空间后方交会的精度,前交过程中没有充分利用多余条件进行平差计算;第二种方法计算公式比较多,最后的点位精度取决于相对定向和绝对定向的精度,用这种方法的解算结果不能严格表达一幅影像的外方位元素;第三种方法的理论最严密、精度最高,待定点的坐标是完全按最小二乘法原理解求出来的。立体像对的前方交会:这种由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。现已知两张像片的内、外方位元素,设想将像片按内外方位元素值置于摄影时的位置,显然同名射线 S1a1
21、 与 S2a2 必然交于地面点 A。空间前方交会的计算步骤为:由已知的外方位角元素及像点的坐标,计算像空间辅助坐标;由外方位线元素,计算摄影基线分量 Bx,By,Bz;计算投影系数 N1,N2;最后由前方交会公式计算地面点的地面摄影测量坐标。由于 N1 和 N2 已经求出,计算地面坐标时 YA 应取平均值,是为了消除相对定向中存在的残差的影响。 22112YNYNYssA 双像解析计算的空间后交前交方法:野外像片控制测量在重叠部分四角,找出四个明显地物点,作为四个控制点。在野外用普通测量的方法测算出四个控制点的地面测量坐标 XtYtZt。用立体坐标量测仪量测像点的坐标像片在仪器上归心定向后,测
22、出四个控制点的像片坐标(x1,y1)与(x2,y2),然后测出所有需要解求的地面点的像点坐标(x1,y1) 和(x2,y2)。空间后方交会计算像片外方位元素根据计算机中事先编制好的程序,按要求输入控制点的地面坐标及相应的像点坐标,对两张像片各自进行空间后方交会,计算各自的六个外方位元素 Xs1,Ys1,Zs1,j1,w1,k1 和 Xs2,Ys2,Zs2,j2,w2,k2。空间前方交会计算未知点地面坐标1)用各自像片的角元素,计算出左、右像片的方向余弦值,组成旋转矩阵 R1 与 R2。2)根据左、右像片的外方位线元素计算摄影基线分量 Bx,By ,Bz1212sszyssxZBYX3)逐点计算
23、像点的像空间辅助坐标: fyxRZYX111 fyxRZYX2224)计算点投影系数: 1212221ZXBNzx5)计算未知点的地面摄影测量坐标: 2211 2211 sstpt sstp ZNZZYYX6)重复 35 完成所有点地面坐标的计算。相对定向:用解析计算的方法解求相对定向元素的过程,称为解析法相对定向。由于不涉及像片的绝对位置,因此不需控制点。相对定向元素:用于描述两张像片相对位置和姿态关系的参数,称为相对定向元素。像片在选定的像空间辅助坐标系中的位置(摄影中心 S 的坐标)和姿态(像片的姿态角,用 j,w,k 表示) 。连续像对相对定向:是以左方像片为基准,求出右方像片相对于左
24、方像片的相对方位元素。 (以左片的像空间坐标系作为像空间辅助坐标系)bx 只决定模型的大小, 不影响模型的建立 ,因此可以给定一固定值,不需求解。相对定向元素为 5 个。单独像对相对定向:是以摄影基线作为像空间辅助坐标系的 X轴,以左摄影中心 S 为原点,左像片主光轴与摄影基线 B 组成的主核面(左主核面)为 XZ 平面,构成右手直角坐标系。bx 只决定模型的大小, 不影响模型的建立 ,因此可以给定一固定值,不需求解。相对定向元素为 5 个。解析法相对定向原理: 从两个摄站对同一地面摄取一个立体像对时,同名射线对对相交于地面点,此时,若保持两张像片之间相对位置和姿态关系不变,将两张像片整体移动
25、时,同名射线对对相交的特性也不发生变化。同名射线对对相交是相对定向的理论基础。相对定向的共面条件:如图所示,S1a1 和 S2a2 为一对同名射线,其矢量用 S1a1 和 S2a2 表示,摄影基线矢量用B 表示。同名射线对对相交,表明射线 S1a1, S2a2 ,及摄影基线 B 位于同一平面内,亦即三矢量 S1a1, S2a2 ,B 共面。根据矢量代数,三矢量共面,它们的混合积等于零,即:共面条件方程021aS其值为零的条件是完成相对定向的标准,用于解求相对定向元素。连续像对相对定向元素解算过程:在立体坐标量测仪上,量测选定的 6 个定向点的像点坐标 (x1,y1)及(x2,y2)。确定初始值
26、:假定左像片水平,则左片旋转矩阵 R1 为单位阵;右片的角元素 j,w,k 及m,g 的初始值取为零;bx 取定向点中 1 号点的左右视差(x1 x2) 。根据初始值,计算右片旋转矩阵 R2。根据输入的像点平面坐标,计算像空间辅助坐标: fyxRZYXfyxZYX222111,根据给定的初始值,计算 by,bz,并根据像空间辅助坐标,计算各点的投影系数 N1 ,N2。根据连续像对相对定向的作业公式计算每个定向点的误差方程常数项及系数项,组成误差方程式。计算法方程系数矩阵及常数项,并解求法方程,求得未知数的改正数。求未知数的新值,即初始值加改正数。检查未知数的改正数是否大于限差,若大于限差,则重
27、复步的计算,直到所有改正数都小于限差为止。绝对定向:要确定立体模型在地面测量坐标系中的正确位置,则需要把模型点的摄影测量坐标转化为地面测量坐标,这一工作需要借助于地面测量坐标为已知值的地面控制点来进行,称为立体模型的绝对定向。绝对定向包括模型的旋转、平移和缩放。解析法绝对定向的目的:将相对定向后求出的摄影测量坐标变换为地面测量坐标。绝对定向元素:一个像对的两张像片有十二个外方位元素,相对定向求得五个元素后,要恢复像对的绝对位置,还要解求七个绝对定向元素。绝对定向元素共有七个( , Y, Z, , , , , ) ZYXcbaZYXPtp321式中,(X tp,Y tp,Z tp)为模型点的地面
28、摄影测量坐标,(X P,Y P,Z P)为同一模型点的摄影测量坐标。l 为模型缩放比例因子,a1,bl,c3 为坐标轴系三个转角 , , ,计算出的方向余弦, , Y, Z 为坐标原点的平移量。上式中有 7 个未知数,至少需列 7 个方程,若将已知平面坐标 (Xtp,Y tp)和高程 Ztp 的地面控制点称为平高控制点,仅已知高程的控制点称为高程控制点,则至少需要两个平高控制点和一个高程控制点,而且三个控制点不能在一条直线上。生产中,一般是在模型四角布设四个控制点,因此有多余观测值,按最小二乘法平差解求。绝对定向的解算过程:(1 )确定待定参数的初始值: 0= 0= 0=0, 0=1,X= Y
29、= Z=0 。(2 )计算地面摄影测量坐标系重心的坐标和重心化的坐标。(3 )计算摄影测量坐标系重心的坐标和重心化的坐标。(4 )计算常数项 00ZYXRZYXlptptzyx(5 )组成总误差方程式。(6 )逐点法化及法方程式求解,得到待定参数的改正数。(7 )计算待定参数的新值 (8 )判断 d ,d ,d 是否均小于给定的限值 。若大于限值 ,则重复计算,否则,计算过程结束。光束法双像解析摄影测量:用已知的少数控制点以及待求的地面点,在像对内,同时解求两张像片的外方位元素与待定点的坐标。由共线方程出发,但在线性化过程中与单影像空间后方交会问题的不同之处是此时把待定点坐标 X,Y,Z 作为
30、未知数,未知数,控制点同时列误差方程,联合进行解算。该解法含有左、右像片共十二个外方位元素为未知数。对于每个待求点还引入三个坐标改正数为未知数。若一个立体像对中有四个平高控制点和 n 个待求点,则共需要解求(12+3n )个未知数 ,而误差方程式个数为 (16+4n)。外方位元素和待定点坐标按照最小二乘法原理解求。解析空中三角测量:指的是用摄影测量解析法确定区域内所有影像的外方位元素。摄影测量方法测定(或加密)点位坐标的意义:不需直接触及被量测的目标或物体,凡是在影像上可以看到的目标,不受地面通视条件限制,均可以测定其位置和几何形状;可以快速地在大范围内同时进行点位测定,从而可节省大量的野外测
31、量工作量;摄影测量平差计算时,加密区域内部精度均匀,且很少受区域大小的影响;所以,摄影测量加密方法已成为一种十分重要的点位测定方法。解析空中三角测量的分类:从传统方法上讲,根据平差中采用的数学模型可分为航带法、独立模型法和光束法。 根据平差范围的大小,解析空中三角测量可分为单模型法、单航带法和区域网法。GPS 辅助空中三角测量 :是指利用机载 GPS 接收机与地面基准点的 GPS 接收机同时、快速、连续地记录相同的 GPS卫星信号,通过相对定位技术的离线数据后处理获取摄影机曝光时刻摄站的高精度三维坐标,将其作为区域网平差中的附加非摄影测量观测值,以空中控制取代(或减少) 地面控制;经采用统一的
32、数学模型和算法,整体确定点位并对其质量进行评定的理论、技术和方法。第四章 数字摄影测量数字摄影测量: 利用数字灰度信号,采用数字相关技术量测同名像点,在此基础上通过解析计算,进行相对定向和绝对定向,建立数字立体模型,从而建立数字高程模型、绘制等高线、制作正射影像图以及为地理信息系统提供基础信息等。利用计算机技术,代替人眼的立体模型观测。计算机、计算机的计算和影像匹配算法;对象为数字或数字化影像。影像数字化:将透明正片(或负片)放在影像数字化器上,把像片上像点的灰度值用数字形式记录下来,称为影像数字化。设 F0 为投影在透明像片上的光通量,F 为透过透明像片后的光通量。透过率 T,不透过率 OO
33、T0影像的灰度:又称光学密度,反映了透明的程度,即透光的能力。影像的灰度用不透过率的对数表示: OD1log采样:对实际连续函数模型离散化的量测过程,被量测的点称为样点,样点之间的距离即采样间隔。量化:将各点的灰度值取为整数的过程方法为将透明像片有可能出现的最大灰度变化范围进行等分,等分的数目称为“灰度等级” ,然后将每个点的灰度值在其相应的灰度等级内取整,取整的原则是四舍五入。由于数字计算机中数字均用二进制表示,因此灰度等级一般都取为 2m(m 是正整数)。数字影像是一个灰度矩阵 g。矩阵的每个元素 gj,i 是一个灰度值,对应着光学影像或实体的一个微小区域,称为像元素或像元或像素(Pixe
34、l= Picture element) 。要从影像中提取物体的空间信息,首先要确定与物点相对应的像点坐标。数字影像内定向:在摄影测量中常取用以像主点为原点的像平面坐标来建立像点与地面点的坐标关系。由于在像片扫描的数字化过程中,像片的扫描坐标系与像平面坐标系一般不平行,且坐标原点不同,所以同一像点的像平面坐标 x,y 与其扫描坐标 x,y不相等,需要加以换算,这种换算称为数字影像内定向。 210ybxbyaax其中 a0,a1,a2,b0,b1,b2 称为内定向参数,其数值由像片上四个框标的扫描坐标及其相应的像平面坐标组成误差方程式,用平差运算求得。内定向问题需要借助影像的框标来解决。现代航摄仪
35、一般都具有 48 个框标。位于影像四边中央的为机械框标,位于影像四角的为光学框标,它们一般为对称分布。为了进行内定向,必须量测影像上框标点的影像架坐标或扫描坐标。然后根据量测相机的检定结果所提供的框标理论坐标(传统摄影测量中也用框标距理论值) ,用解析计算方法进行内定向,从而获得所量测各点的影像坐标。数字影像相关:对于全数字化摄影测量,在没有人眼的立体观测的情况下,如何从左、右数字影像中寻找同名像点,亦即数字影像相关,是全数字化摄影测量的核心问题。即首先取出以待定点为中心的小区域中的影像信号,然后取出其在另一影像中相应区域的影像信号,计算两者的相关函数,以相关函数最大值对应的相应区域中心点为同
36、名点。以影像信号分布最相似的区域为同名区域,同名区域的中心点为同名点。基于灰度的影像相关:是在以待定点为中心的窗口(或称区域)内,以影像的灰度分布为影像匹配的基础,故它们被称为灰度匹配。相关系数法一般在左影像上先确定一个待定点,称之为目标点,以此待定点为中心选取 m x n(可取 m = n)个像素的灰度阵列作为目标区或称目标窗口。为了在右影像上搜索同名点,必须估计出该同名点可能存在的范围,建立一个 k x l(k m, ln)个像素的灰度阵列作为搜索区,相关的过程就是依次在搜索区中取出 m x n 个像素灰度阵列(搜索窗口通常取 m = n) ,计算其与目标区的相关系数。协方差法协方差法与相
37、关系数法类似,只是相似性判据不同,这里采用协方差值作为相似性判据。取其最大者对应的相关窗口的中心,即为目标点的同名像点。高精度最小二乘相关影像匹配中判断影像相似的度量很多,其中有一种是“灰度差的平方和最小” 。若在此系统中引入系统变形的参数,按 vvmin 的原则,解求变形参数,就构成了最小二乘影像匹配系统。影像灰度的系统变形有两大类:一类是辐射畸变;另一类是几何畸变。在影像匹配中引入这些变形参数,同时按最小二乘的原则,解求这些参数,就是最小二乘影像匹配的基本思想。核面:通过摄影基线 S1S2 与任一物方点 A 所作的平面 WA 称为通过点 A 的核面。通过像主点的核面称为主核面。核面与核线核
38、线:核面与影像面的交线称为核线。在一条核线上的任一点其在另一幅影像上的同名像点必定位在其同名核线上。核线相关: 在核线影像上,只需要进行一维搜索。理论上,目标窗与搜索区均可以是一维窗口。但是,由于两影像窗口的相关系数一般是统计量,为了保证相关结果的可靠性,应有较多的样本进行估计,因而目标窗口中的像素不应太少。因此一维相关目标区的选取一般应与二维相关时相同,取一个以待定点为中心,m x n(可取 m = n)个像素的窗口。此时搜索区为 m x l(ln)个像素的灰度阵列,搜索工作只在一个方向进行,即计算相关系数。基于特征的影像匹配:影像匹配主要是用于配准那些特征点、线或面。为有别于前述的基于灰度
39、的匹配,这一类算法被称为特征匹配或基于特征的匹配。基本思想:首先用某种特征提取算子提取影像中的特征(点、线、面 );然后对提取的特征进行参数描述;最后以特征的参数值为依据进行同名特征的搜索,继而获得同名像点。 特征匹配步骤:特征提取;利用一组参数对特征作描述;利用参数进行特征匹配。点特征主要指明显点,提取点特征的算子称为兴趣算子或有利算子。Moravec 算子:Moravec 于 1977 年提出利用灰度方差 提取点特征的算子。通过逐像元量测与其邻元的灰度差,搜索相邻像元之间具有高反差的点。(1 )计算各像元的有利值 IV 。在 55 的窗口内沿着图示四个方向分别计算相邻像元间灰度差的平方和,
40、取其中最小者作为该像元的有利值。(2 )给定一经验阈值,将有利值大于阈值的点作为候选点。(3 )抑制局部非最大。在一定大小窗口中(如 55,7 7,9 9 像元等) ,将上一步所选的候选点与其周围的候选点比较,若该像元的有利值非窗口中最大值,则去掉;否则,该像元被确定为特征点。综上所述,Moravec 算子是在四个主要方向上,选择具有最大最小灰度方差的点作为特征点。数字摄影测量工作站的组成:硬件组成:- 计算机;- 外部设备:立体观测设备;操作控制设备- 输入设备:影像数字化仪- 输出设备:矢量绘图仪;栅格绘图仪软件组成:- 数字影像处理软件主要包括:影像旋转;影像滤波;影像增强;特征提取-
41、模式识别软件主要包括:特征识别与定位,框标的识别与定位;影像匹配(同名点、线与面的识别) ;目标识别- 解析摄影测量软件主要包括:定向参数计算;空中三角测量解算;核线关系解算,坐标计算与变换;数值内插,数字微分纠正;投影变换- 辅助功能软件主要包括:数据输入输出;数据格式转换;注记;质量报告;图廓整饰;人机交互第五章 数字高程模型(DEM)及其应用 数字地面模型(DTM)就是一个用于表示地面特征的空间分布的数据阵列,最常用的是用一系列地面点的平面坐标 X、Y 以及该地面点的高程 Z 或属性组成的数据阵列。 若地面按一定格网形式有规则地排列,点的平面坐标 X、Y 可由起始原点推算而无需记录,这样
42、地表面形态只用点的高程 Z 来表达,称为数字高程模型(DEM) 。数字高程模型 DEM 表示形式:规则矩形格网利用一系列在 X,Y 方向上都是等间隔排列的地形点的高程 Z 表示地形,形成一个矩形格网 DEM。优点是存贮量最小、便于使用管理。缺点是有时不能准确表示地形的结构与细部。不规则三角网 TIN若将地形特征采集的点按一定规则连接成覆盖整个区域且互不重叠的许多三角形,构成一个不规则三角网 TIN 表示的 DEM,通常称为三角网 DEM 或 TIN。优点是能较好地顾及地貌特征点、线,表示复杂地形表面比矩形格网精确。缺点是数据量较大,数据结构较复杂,使用与管理也较复杂。Grid-TIN 混合网德
43、国 Ebner 教授等提出了 Grid-TIN 混合形式的 DEM,一般地区使用矩形网数据结构,沿地形特征则附加三角网数据结构。优点是较好的集成了前两种形式的优势,兼顾地形整体结构和细部。缺点为数据结构复杂,需要记录附加三角网信息,管理不便。DEM 数据点的采集方法:地面测量:利用自动记录的测距经纬仪在野外实测现有地图数字化:用数字化仪对已有地图上的信息,进行数字化的方法。手扶跟踪数字化仪、扫描数字化仪、半自动跟踪数字化仪。空间传感器:利用 GPS、雷达和激光测高仪等进行数据采集DEM 内插:就是根据参考点上的高程求出其它待定点上的高程,在数学上属于插值问题。在 DEM 内插中一般不采用整体函
44、数内插(即用一个整体函数拟合整个区域) ,而采用局部函数内插。主要方法:移动曲面拟合法、加权平均法和最小二乘配置法。数字高程模型内插的特点:整个地球表面的起伏形态不可能用一个简单的低次多项式来拟合。而高次多项式的解不稳定且会产生不符合实际的振荡。地形表面既有连续光滑的特性,又可能有由于自然力或人为的原因产生地形的不连续。由于计算机内存的限制,不可能同时对很大的范围来内插数学地面模型。因此,一般总是将测区或图幅划分成较小的计算单元,采用局部函数内插方法,并在内插中兼顾一般数据点和地形特征点、线,并且根据数据点采集的不同方法采取相应的内插方法。移动曲面拟合法:是一个以待求点为中心的逐点内插法,它定
45、义一个新的局部函数去拟合周围的数据点,进而求出待定点的高程。通常是将坐标原点移到待定点上,而采用的数据点应落在半径为 R 的圆内。(l)建立局部坐标:对 DEM 每一个格网点,从数据点中检索出对应该 DEM 格网点的几个分块格网中的数据点,并将坐标原点移至该 DEM 格网点 P(Xp ,Yp ):piYX(2 )选取邻近的数据点:为了选取邻近的数据点,以待定点 P 为圆心,以 R 为半径作圆,凡落在圆内的数据点即被选用。所选择的点数根据所采用的局部拟合函数来确定,在二次曲面内插时,要求选用的数据点个数 n6。当数据点 P(X , Y)到待定点 P( Xp, Yp )的距离满足范围时,该点即被选
46、用。若选择的点数不够时,则应增大 R 的数值,直至数据点的个数 n 满足要求。 dii2(3 )列出误差方程式。 (4 )计算每一数据点的权:在求解中还可以对每个数据点给一权 P,该值并不表示数据点采样的精度,而是表示该点高程对待定点高程的作用大小。因此它显然与该点到 P 点的距离成反比。当内插点无限接近于某个数据点时,则该点的权应无限地大。(5 )法化求解 移动曲面拟合法注意事项:对点的选择除满足 n6 外,应保证各个象限都有数据点。当地形起伏较大时,半径 R 不能取得很大。当数据点较稀或分布不均匀时,利用二次曲面移动拟合可能产生很大的误差。多面函数法的基本思想:在每个数据点上建立一个曲面通
47、常是旋转曲面,通过将这些曲面按一定比例的叠加来最佳地描述所要求的物体表面,并使叠加后的曲面严格地通过各数据点。有限元法 DEM 内插:为了解算一个函数,把它分成为许多适当大小的“单元” ,在每一单元中用一个简单的函数,例如多项式来近似地代表它,并保证相邻单元间有连续(或光滑)的过渡。规则格网 DEM 的存贮管理:1.DEM 数据文件的存贮:文件头+ 各格网点的高程 2 地形数据库:将整个范围划分成若干地区,每一地区建立一个子库,将这些地区合并成一个高一层次的大区域构成整个范围的数据库 规则格网 DEM 数据的压缩:整型量存贮、差分映射、压缩编码。三角网数字地面模型的存贮:三角网数字地面模型 T
48、IN 的数据存储方式与矩形格网 DTM 存储方式大不相同,它不仅要存储每个网点的高程,还要存储其平面坐标、网点连接的拓扑关系、三角形及邻接三角形等信息。常用的 TIN 存储结构有以下三种形式:直接表示网点邻接关系;直接表示三角形及邻接关系;混合表示网点及三角形邻接关系。等高线的绘制步骤:根据规则格网 DEM 自动绘制等高线,主要包括以下两个步骤:1)利用 DEM 的矩形格网点的高程内插出格网边上的等高线点,并将这些等高线点按顺序排列(即等高线的跟踪) 。2)利用这些顺序排列的等高线点的平面坐标 X,Y 进行插补,即进一步加密等高线点并绘制成光滑的曲线(即等高线的光滑) 。为了获得一条光滑的等高线,在这些离散的等高线点之间还必须插补(加密) 。 插补的方法的要求: 曲线应通过已知的等高线点(常称为节点) ;曲线在节点处光滑,即其一阶导数(或二阶导数)是连续的;相邻两个节点间的曲线没有多余的摆动;同一等高线自身不能相交。立体透视图:从三维立体数字地面模型至二维平面透视图的变换方法很多,利用摄影原理的方法是较简单的一种,基本分以下几步进行:1、 选择适当的参考面高程 Z,以及