收藏 分享(赏)

信号检测与估计理论 第六章 波形估计.ppt

上传人:精品资料 文档编号:11322894 上传时间:2020-03-17 格式:PPT 页数:64 大小:2.55MB
下载 相关 举报
信号检测与估计理论 第六章 波形估计.ppt_第1页
第1页 / 共64页
信号检测与估计理论 第六章 波形估计.ppt_第2页
第2页 / 共64页
信号检测与估计理论 第六章 波形估计.ppt_第3页
第3页 / 共64页
信号检测与估计理论 第六章 波形估计.ppt_第4页
第4页 / 共64页
信号检测与估计理论 第六章 波形估计.ppt_第5页
第5页 / 共64页
点击查看更多>>
资源描述

1、估计理论与信号检测,第六章 信号波形的估计,内容提要,6.1 引言 6.2 连续过程的维纳滤波 6.3 离散过程的维纳滤波 6.4 正交投影原理 6.5 离散卡尔曼滤波的信号模型 6.6 离散卡尔曼滤波 6.7 状态为标量时的离散卡尔曼滤波,6.1 引言,研究内容: 信号的波形估计(状态估计)若被估计的量是随机过程或未知的非随机过程,则称这种估计为信号的波形估计或状态估计。 理论基础: 随机过程及其统计描述(2.3, P.30) 线性系统对随机过程的响应(2.5, P.44) 随机噪声理论(2.6, P.46) 正交投影原理(6.4, P.400),2、离散信号情况(只考虑加性噪声)信号状态估

2、计理论又称为信号状态滤波理论(抑噪声,提信号)。状态滤波,状态预测,状态平滑,,1、连续信号情况(只考虑加性噪声)信号波形估计理论又称为信号波形滤波理论(抑噪声,提信号)。波形滤波,波形预测,波形平滑,,6.1.1 信号波形估计的基本概念,6.1.1 信号波形估计的基本概念,From Steven page 323,6.1.2 信号波形估计的准则和方法,信号波形(状态)估计准则:线性最小均方误差准则。 维纳滤波和卡尔曼滤波是实现从噪声中提取信号,完成信号波形(状态)估计的两种线性最佳估计方法。 维纳滤波 要求知道随机信号的统计特性,即相关函数或功率普密度,得到的结果是封闭解(解析式); 由于采

3、用频域设计方法,仅适用于一维平稳随机信号。 卡尔曼滤波(庞特里亚金极大值原理、贝尔曼动态规划) 采用状态方程和观测方程描述系统的信号模型; 可解决多输入多输出非平稳随机信号的估计问题; 采用递推算法非常适合于计算机处理,计算效率高。,6.1.2 信号波形估计的准则和方法,例6.1.1 平稳随机信号的线性最小均方误差估计(预测)线性最小均方误差估计的正交性原理,6.1.2 信号波形估计的准则和方法,例6.1.2 平稳随机信号的线性最小均方误差估计(预测)线性最小均方误差估计的正交性原理,见习题6.1,6.1.2 信号波形估计的准则和方法,例6.1.2 (续)例题相关结论的证明,为偶函数,其导数

4、为奇函数,故有,6.1.2 信号波形估计的准则和方法,例6.1.3 平稳随机信号的线性最小均方误差估计(平滑)线性最小均方误差估计的正交性原理,从噪声中提取信号现这种功能的有效方法之一是设计一种具有最佳过滤特性的滤波器,当叠加有噪声的信号通过这种滤波器时,它可以将信号尽可能完整地重现或对信号作出尽可能精确的估计,从而对所伴随的噪声进行最大限度地抑制。 维纳滤波器就是具有这种特性的一种典型滤波器。 信号波形的维纳滤波分为: 连续过程的维纳滤波 离散过程的维纳滤波,6.2 连续过程的维纳滤波,维纳(1894-1964)是控制论的创始人、信息论的创始人之一,于1948年发表控制论(Cyberneti

5、cs)。,线性时变滤波器,6.2.1 最佳线性滤波,线性加权和,正交性原理,g(t)表示 待估计波形,线性时不变滤波器假设 和 都是零均值的平稳随机过程,而且二者是联合平稳的。,6.2.2 维纳-霍夫方程,维纳-霍夫方程,维纳滤波器,维纳滤波器非因果解,6.2.3 维纳滤波器的非因果解,线性卷积式,两边进行傅里叶变换,s(t)与加性噪声 n(t)相互统计独立,维纳滤波器非因果解,6.2.3 维纳滤波器的非因果解,(1)功率普密度 和 互不重叠(2)功率普密度 和 有部分重叠,若 是 函数,即滤波器输入是一个白色过程,积分方程就可以直接求解。,6.2.4 维纳滤波器的因果解,有理功率普密度,白化

6、滤波器,求取,6.2.4 维纳滤波器的因果解,当 时,维纳滤波器波形估计的均方误差(自学),6.2.4 维纳滤波器的因果解,例6.2.2 求解随机信号 的波形估计问题,即设计维纳滤波器使信号波形估计的均方误差最小。,6.2 连续过程的维纳滤波 例题,例6.2.2(续)维纳滤波器的非因果解,6.2 连续过程的维纳滤波 例题,例6.2.2(续)维纳滤波器的因果解,6.2 连续过程的维纳滤波 例题,例6.2.3,6.2 连续过程的维纳滤波 例题,例6.2.3(续),6.2 连续过程的维纳滤波 例题,类似于连续过程的维纳滤波,设计离散过程的维纳滤波器,就是寻求在线性最小均方误差准则下线性滤波器的系统函

7、数 (Z域解)或单位脉冲响应 (时域解)。(数字滤波)拉氏变换(傅立叶变换) Z变换 左半平面 单位圆内 右半平面 单位圆外,6.3 离散过程的维纳滤波,根据观测信号序列 对信号 作出线性最小均方误差估计,即求 。,6.3.1 离散的维纳-霍夫方程,离散形式的维纳-霍夫方程,6.3.2 离散维纳滤波器的Z域解,非因果解,当 ,且信号序列 与噪声序列 互不相关时,6.3.2 离散维纳滤波器的Z域解,因果解 (1)观测信号 是白色序列(2)观测信号 是非白序列,且其功率普密度是有理函数,无限长因果序列的离散维纳滤波器不具有实时性而使其应用受到限制。通常用有限长序列 来逼近离散维纳滤波器的解 。,6

8、.3.3 离散维纳滤波器的时域解,N 阶FIR滤波器,6.3.3 离散维纳滤波器的时域解,N阶FIR滤波器(Finite Impulse Response,有限长度脉冲响应) ;IIR 滤波器(Infinite Impulse Response,无限长度脉冲响应),即维纳滤波器。,例6.3.1 离散信号序列 的维纳滤波器Z域解(1)非因果解(2)因果解,6.3 离散过程的维纳滤波 例题,例6.3.2 设计二阶FIR滤波器逼近维纳滤波器(三阶、四阶),6.3 离散过程的维纳滤波 例题,动态信号模型,Steven M. Kay page 338347,DC电平测量:,实际上真实的电压值随时间缓慢变

9、化(温度的影响、器件的老化):,真实电压和MVU估计量,图中真实电压 的连续样本的差别不是很大,表现了高度的“相关性”。 可以认为 是随机过程的一个现实, 均值为10,样本之间存在一定的相关性。,相关约束的强制要求避免 的估计 随时间起伏太大。,线性最小均方误差准则 第五章5.7.3小节曾提到过正交性原理(P311) 本章前3节也曾多次提到过正交性原理 本章6.6节讨论的卡尔曼滤波也采用线性最小均方误差准则,其递推公式的推导也是基于正交投影的概念和原理进行的。 正交投影的三个引理: (1)引理I,唯一性 (2)引理II,线性可转换性和可叠加性 (3)引理III,可递推性,6.4 正交投影原理,

10、设s和x分别是具有前二阶矩的M维和N维随机矢量。如果存在一个与s同维的随机矢量 ,并且具有如下三个性质: (1)可以用x线性表示,即存在非随机的M维矢量a和MN矩阵B,满足(2)满足无偏性要求,即(3)误差 与x正交,即则称 是s在x上的正交投影,简称投影,并记为,6.4.1 正交投影的概念,6.4.2 正交投影的引理,引理 正交投影的唯一性 若s和x分别是具有前二阶矩的M维和N维随机矢量,则s在x上的正交投影唯一地等于基于x的s之线性最小均方误差估计矢量,即证明:线性性质无偏性故有正交性这样有,6.4.2 正交投影的引理,引理 正交投影的线性可转换性和可叠加性 设s1和s2分别是两个具有前二

11、阶矩的M维随机矢量,x是具有前二阶矩的N维随机矢量,A1和A2均为非随机矩阵,其列数等于M,行数相同,则证明:令则式中这样有,6.4.2 正交投影的引理,引理 正交投影的可递推性 设s,x(k-1)和xk是三个具有前二阶矩的随机矢量,它们的维数不必相同,又令则式中引理的证明见附录6A。,6.4.2 正交投影的引理,引理 正交投影的可递推性(续),虽然维纳滤波和卡尔曼滤波都是解决以线性最小均方误差为准则的最佳线性滤波问题,二者之间的差别:维纳滤波只适用于平稳随机过程(信号);卡尔曼滤波则可用于非平稳随机过程(信号)。维纳滤波根据全部过去的和当前的观测信号来估计信号的波形;卡尔曼滤波根据前一次的估

12、计值和当前的观测值来估计信号波形(递推算法)。维纳滤波的解以线性滤波器的系统函数或脉冲响应的形式给出;卡尔曼滤波的解则以估计值的形式给出。维纳滤波的信号模型是信号和噪声的相关函数或功率普密度函数;卡尔曼滤波的信号模型是信号的状态方程和观测方程。,6.5 离散卡尔曼滤波的信号模型,线性系统离散状态方程,6.5.1 离散状态方程和观测方程,状态转移矩阵,零输入响应,零状态响应,分步转移性 互逆性 同时刻不变性,6.5.1 离散状态方程和观测方程,线性系统离散状态方程和观测方程状态方程观测方程,系统控制矩阵,扰动噪声矢量,观测噪声矢量,一步状态 转移矩阵,例6.5.1 建立系统的离散状态方程和观测方

13、程(1)状态方程(2)观测方程,6.5.1 离散状态方程和观测方程,6.5.2 离散信号模型的统计特性,基本离散卡尔曼滤波问题的信号模型的统计特性1)2)3)4),基本的离散卡尔曼滤波问题 扩展的离散卡尔曼滤波问题,扰动噪声矢量为白噪声序列,观测噪声矢量为白噪声序列,两者互不相关,初始状态和两种噪声互不相关,离散卡尔曼滤波解决离散时间系统状态矢量的递推估计问题。离散的状态方程和观测方程分别为离散时间系统的状态估计,就是根据观测矢量 求得状态矢量 的一个估计 的问题。按照j和k的关系可分为三种情况: (1) 时,称为状态滤波; (2) 时,称为状态预测(外推);状态一步预测 (3) 时,称为状态

14、平滑(内插)。,6.6 离散卡尔曼滤波,长列矢量,因为离散卡尔曼滤波采用线性最小均方误差准则,所以可以使用正交投影的概念和原理来推导离散卡尔曼滤波的递推公式。引理I引理III,6.6.1 离散卡尔曼滤波的递推公式,1、 项的计算引理II,6.6.1 离散卡尔曼滤波的递推公式,状态一步预测值,观测长列矢量 仅由 表示,所以 与 不相关。,2、 和 的计算,6.6.1 离散卡尔曼滤波的递推公式,3、 项的计算,6.6.1 离散卡尔曼滤波的递推公式,4、状态一步预测均方误差阵 的计算,状态滤波的 均方误差阵,状态一步预测的均方误差阵,5、 项的计算,6.6.1 离散卡尔曼滤波的递推公式,6、状态滤波

15、值 的计算,7、状态滤波均方误差阵 的计算,6.6.1 离散卡尔曼滤波的递推公式,离散卡尔曼滤波是系统状态矢量的一种递推估计。为了能启动递推计算,需要确定初始状态滤波值 和初始状态滤波的均方误差阵 。,6.6.2 离散卡尔曼滤波的递推算法,最小化,离散卡尔曼滤波递推公式表,6.6.2 离散卡尔曼滤波的递推算法,状态方程 观测方程 统计特性,一步预测均方误差阵 滤波增益矩阵 滤波均方误差阵 状态滤波 状态一步预测,滤波初始状态,离散卡尔曼滤波递推公式可以分成两部分:第一部分是前三个公式,它们是状态滤波增益矩阵的递推公式;第二部分是后两个公式,它们是离散状态滤波和状态一步预测的递推公式。,6.6.

16、2 离散卡尔曼滤波的递推算法,6.6.3 离散卡尔曼滤波的特点与性质,1、离散卡尔曼滤波的主要特点(1)离散卡尔曼滤波的参数矩阵可以是时变的,因此离散卡尔曼滤波适用于矢量的非平稳随机过程的状态估计。 (2)离散卡尔曼滤波的状态估计采用递推估计算法,数据存储量少,运算量少,特别是避免了高阶矩阵求逆问题,提高了运算效率。 (3)由于离散卡尔曼滤波的增益矩阵 与观测数据无关,所以有可能离线算出,从而减少实时在线计算量,提高实时处理能力。 (4)离散卡尔曼滤波不仅能够同时得到状态滤波值和状态一步预测值,而且同时得到状态滤波的均方误差阵和状态一步预测的均方误差阵,它们是状态滤波和状态一步预测的精度指标。

17、,6.6.3 离散卡尔曼滤波的特点与性质,2、离散卡尔曼滤波的主要性质(1)状态滤波值是系统状态的线性最小均方误差估计量,因为它是无偏估计量,所以状态滤波的均方误差阵就是所有线性估计中的最小误差方差阵。 (2)状态估计的误差矢量与状态估计量正交,即(3)状态滤波的增益矩阵与初始状态均方误差阵、扰动噪声矢量的协方差矩阵和观测噪声矢量的协方差矩阵有关。(4)状态滤波的均方误差阵的上限值为状态一步预测的均方误差阵。,参见(5.7.32)式和(5.8.38)式,矩阵求逆引理P314,例6.6.1 离散卡尔曼滤波增益矩阵 的离线递推计算,6.6 离散卡尔曼滤波 例题,例6.6.1 离散卡尔曼滤波增益矩阵

18、 的离线递推计算(续),6.6 离散卡尔曼滤波 例题,例6.6.1 离散卡尔曼滤波增益矩阵 的离线递推计算(续),6.6 离散卡尔曼滤波 例题,例6.6.2 若飞机相对于雷达作径向匀加速直线运动,现通过对飞机的距离测量来估计飞机的距离、速度和加速度。设 (1)从 开始测量,测量时间间隔为2s; (2)飞机相对雷达的距离、速度和加速度为 。现已知(3)忽略扰动噪声 对飞机的扰动; (4)观测噪声 是零均值的白噪声随机序列,已知(5)观测噪声 与 均互不相关。,6.6 离散卡尔曼滤波 例题,例6.6.2 若飞机相对于雷达作径向匀加速直线运动,现通过对飞机的距离测量来估计飞机的距离、速度和加速度。(续) 信号模型,6.6 离散卡尔曼滤波 例题,例6.6.2 若飞机相对于雷达作径向匀加速直线运动,现通过对飞机的距离测量来估计飞机的距离、速度和加速度。(续),6.6 离散卡尔曼滤波 例题,6.7 状态为标量的离散卡尔曼滤波,6.7.1 状态为标量的离散状态方程和观测方程,6.7.2 状态为标量的离散卡尔曼滤波,(I)(II)(III) (IV) (V),6.7.3 有关参数的特点,状态滤波的均方误差由 (6.7.3)式知,状态滤波的增益状态滤波的均方误差,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报