1、4.4 动量方程、动量矩方程及其应用,4.4.1 动量方程 时刻t,任取一流体系统,体积V(t)、边界面S(t),外法向量n 。,动量定理:系统内动量的变化率等于作用在系统上的合外力( )。,系统内流体动量: 系统所受合外力:,(系统),动量方程反映了物体与流体间的相互作用,是积分形式的方程,对理想和粘性流体都适用。,常用假设:,(1)壁面无摩擦(理想流体):(2)忽略质量力:f = 0;(3)进出口流动均匀: V=const.,4.4.2 动量矩方程,Example 4-5 大气中二元流冲击平板Given:b0、V0,a,p0,不计粘性。Find:流体对平板的作用力。,4.4.3 动量、动量
2、矩方程应用,Solution:(1)取坐标系oxy及控制体:端面足够远;(2)设P为流体对平板的冲击力方向如图;(3)列动量方程(表压力):,得,就是流体对平板的冲击力,方向与图示方向相同,指向平板。,4.5 旋涡运动基本定理,Kelvin定理的几个推论:,4.5.3 Helmholtz定理 - 涡线和涡管保持定理,定理3 如果流体理想、正压、质量力有势,则组成涡线的流体质点永远组成此涡线。定理4 如果流体理想、正压、质量力有势,则组成涡管的流体质点始终组成此涡管,且涡管的强度不随时间而变。,综上所述,Kelvin、Lagrange及Helmholtz定理全面地描述了理想正压流体在有势场中运动
3、时涡量演化的规律:若流体理想、正压、质量力有势,无旋运动永远无旋,有旋运动永远有旋;涡线、涡面、涡管及涡管强度具有保持性。若不满足Kelvin任一条件,则运动过程中会产生新的旋涡,无旋变成有旋;不具备保持性。,kelvin_helm_rollup,bullet_shadowgraph:Shock Wave,vortex_bear,bae_146,Sir William Thompson (Lord Kelvin), born in Belfast, Contributed significantly to the field of hydrodynamics as is evidenced b
4、y his 661 papers and 56 patents. When 11 years old, he entered the the University of Glasgow, leaving in 1841 to enter Perterhouse, Cambridge University, to further his education. To meet Biot in Paris. In 1846 he became Professor of Natural Philosophy at Glasgow, a post he held for 53 years. Contri
5、butions: Long waves, heat conduction, thermodynamics, submarine cables. Philosophy: “There cannot be a greater mistake than that of looking superciliously upon practical applications of science”. Buried: in Westminster Abbey.,Lord KELVIN (1824 1907):,英国及欧盟国家,4.5.4 BiotSavart定理 涡线的诱导速度,Biot-Savart定理:,电流诱导磁场强度,旋涡诱导流体速度,半无限长直涡线,a 2 = 0 ,a 1 = p / 2 : 无限长直涡线,a 2 = 0 ,a 1 = 0: 平面点涡诱导速度场:,诱导速度场除点 r=0 外处处无旋v=0。尽管涡线本身是有旋的,它诱导的速度场是无旋的。平面点涡诱导速度场的速度势和流函数:,