1、 个性化教案 (内部资料,存档保存,不得外泄)海豚教育个性化作业 编号: 鼓楼区 2014 届九年级二模试卷数 学注意事项:1本试卷共 6 页全卷满分 120 分考试时间为 120 分钟考生答题全部答在答题卡上,答在本试卷上无效2请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上3答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑如需改动,请用橡皮擦干净后,再选涂其他答案答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效4作图必须用 2B 铅笔作答,并
2、请加黑加粗,描写清楚一、选择题(本大题共 6 小题,每小题 2 分,共 12 分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1下列运算,正确的是Aaaa 2 Baa2a C3a 32a 2a D2a3a 26a 32对多项式 x23x 2 分解因式,结果为 Ax(x3) 2 B(x1)(x2) C(x1)(x2) D(x 1)(x 2)3对于函数 y一 ,下列说法正确的是2xA它的图象关于坐标原点成中心对称 B自变量 x 的取值范围是全体实数C它的图象不是轴对称图形 Dy 随 x 的增大而增大4如图,O 1 与 O2 的半径分别为 1
3、cm 和 2 cm,将两圆放置在直线 l 上,如果O 1 在直线l 上从左向右滚动,在这个运动过程中, O1 与 O2 相切的次数是A5 次 B4 次 C3 次 D2 次5图 是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图所示则下列图形中,是图的表面展开图的是AB C D6在ABC 中, AB3,AC . 当B 最大时,BC 的长是3A32 B 6CD2 3二、填空题(本大题共 10 小题,每小题 2 分,共 20 分不需写出解答过程,请把答案直接(第 4 题) (第 5 题)图 图O1O2l(第 12 题) (第 13 题)填写在答题卡相应位置上)7我市冬季某一天的最高气温为
4、 1,最低气温为一 6,那么这一天的最高气温比最低气温高 8小明同学在“百度” 搜索引擎中输入“2014 南京青奥会” ,搜索到相关的结果个数约为11 900 000 个,将这个数用科学记数法表示为 (保留 2 个有效数字) 9在 RtABC 中,CD 是斜边 AB 上的中线,如果 AB 4.8 cm,那么 CD cm10. 化简 的结果是 a(a b)2 b(b a)211若某个圆锥底面半径为 3,侧面展开图的面积为 12,则这个圆锥的高为 .12. 如图,把面积分别为 9 与 4 的两个等边三角形的部分重叠,若两个阴影部分的面积分别记为 S1 与S2(S1S 2),则 S1S 2 13.
5、如图,将 ABC 绕点 A 逆时针方向旋转到 ADE 的位置,点 B 落在 AC 边上的点 D 处,设旋转角为 (090)若B125,E30 ,则 14如图,将矩形 ABCD 折叠,使得 A 点落在 CD 上的 E 点,折痕为 FG,若 AD15cm,AB12cm,FG13cm,则 DE 的长度为 cm15根据如图所示的函数图象,可得不等式 ax2bxc 的解集为 kx16已知二次函数 ya( x1)(x3)的图象与 x 轴交于点 A,B,与 y 轴交于点 C,则使ABC为等腰三角形的 a 的值为 三、解答题(本大题共 11 小题,共 88 分请在答题卡指定区域内作答,解答时应写出文字说明、证
6、明过程或演算步骤)17 (6 分)计算:2 123218 (6 分)解方程: 1 5x 4x 2 4x 103x 619 (8 分)根据某市农村居民与城镇居民人均可支配收入的数据绘制如下统计图:20102013 年人均可支配收入统计图20102013 年城镇居民人均可支配收入年增长率统计图(第 19 题)1.32.91.53.341.8012345收入万元年份2010 2011 2012农村居民城镇居民0510152010 2011 2012 2013 年份增长率()8.713.89.111.12013(第 15 题)x 3 2 3yax 2 bxcy kxy(第 14 题)FABDCGE根据
7、以上信息,解答下列问题:(1) 2012 年农村居民人均可支配收入比 2011 年城镇居民人均可支配收入的一半少 0.05万元,请根据以上信息补全条形统计图,并标明相应的数据(结果精确到 0.1 万元) ;(2)在 20102013 年这四年中,城镇居民人均可支配收入和农村居民人均可支配收入相差数额最大的年份是 年.20 (8 分)在ABC 中,点 D 是边 BC 的中点,DEAC,DFAB,垂足分别是点 E,F,且 BFCE(1)求证:ABC 是等腰三角形(2)当BAC 90时,试判断四边形 AFDE 的形状,并证明你的结论21 (8 分) 某歌手选秀节目进入决赛阶段,共有甲、乙、丙、丁 4
8、 名歌手进入决赛, 决赛分 3 期进行,每期比赛淘汰 1 名歌手,最终留下的歌手即为冠军假设每位歌手被淘汰的可能性都相等(1)甲在第 1 期比赛中被淘汰的概率为 ;(2)求甲在第 2 期被淘汰的概率;(3)依据上述经验,甲在第 3 期被淘汰的概率为 22.(8 分)某市从 2012 年起治理空气污染,中期目标为: 2016 年 PM2.5 年均值降至 38 微克/ 立方米以下该城市 PM2.5 数据的相关数据如下:2012 年 PM2.5 年均值为 60 微克/ 立方米,经过治理,预计 2014年 PM2.5 年均值降至 48.6 微克/立方米假设该城市 PM2.5 每年降低的百分率相同,问该
9、市能否顺利达成中期目标?23 (8 分)如图,二次函数 y x 22(2x 2)的图象与 x、y 轴分别交于点 A、B、12C(1)直接写出 A、B、C 点的坐标;(2)设点 P(x ,y )为该图象上的任意一点,连接 OP,求 OP 长度的范围AB CF ED(第 20 题)OA BCyxP (x, y )(第 23 题)24 (8 分)一种成本为 20 元/件的新型商品经过 40 天试销售,发现销售量 p(件) 、销售单价 q(元/件)与销售时间 x(天)都满足一次函数关系,相关信息如图所示(1)试求销售量 p(件)与销售时间 x(天)的函数关系式;(2)设第 x 天获得的利润为 y 元,
10、求 y 关于 x 的函数关系式;(3)求这 40 天试销售过程中何时利润最大?并求出最大值25 (8 分)如图,ABC 中,点 D 为 AB 中点,CDAD.(1)判断ABC 的形状,并说明理由;(2)在图中画出ABC 的外接圆;(3)已知 AC6,BC8,点 E 是 ABC 外接圆上任意一点,点 M 是弦 AE 的中点,当点 E 在ABC 外接圆上运动一周,求点 M 运动的路径长26 (8 分)如图,AB 为O 直径,C、D 为O 上的点,CDCA,CE DB 交 DB 的延长线于点 E(1)判断直线 CE 与O 的位置关系,并说明理由;(2)若 AC4,AB5,求 CE 的长(第 25 题
11、)DACBOABCDE(第 26 题)(第 24 题)销售量 p(件)x(天)10504230 4010235Ox(天)销售单价 q(元/件)8079601054023 402035O27 (12 分)【问题提出】如图,已知海岛 A 到海岸公路 BD 的距离为 AB,C 为公 路 BD 上的酒店,从海岛 A 到酒店 C,先乘船到登陆点 D,船速为 a ,再乘汽车,车速为船速的 n 倍,点 D 选在何处时,所用时间最短?【特例分析】若 n2,则时间 t ,当 a 为定值时,问题转化为:ADa CD2a 在 BC 上确定一点 D,使得 AD 的值最小如图,过点 C 做射CD2 线 CM,使得BCM
12、30 .(1)过点 D 作 DECM,垂足为 E,试说明:DE ;CD2(2)请在图中画出所用时间最短的登陆点 D,并说明理 由【问题解决】(3)请你仿照“特例分析”中的相关步骤,解决图中的问题(写出具体方案,如相关图形呈现、图形中角所满足的条件、作图的方法等) 【模型运用】(4)如图,海面上一标志 A 到海岸 BC 的距离 AB300 m,BC300 m救生员在 C 点处发现标志 A 处有人求救,立刻前去营救,若救生员在岸上跑的速度都是 6 m /s,在海中游泳的速度都是 2 m/s,求救生员从 C 点出发到达 A 处的最短时间 DC BA图 M图 DC BAC BA图 (第 27 题)DC
13、 BA备用图 九年级二模试卷数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分一、选择题(每小题 2 分,共计 12 分)题号 1 2 3 4 5 6答案 D B A C A B二、填空题(每小题 2 分,共计 20 分)77 81.210 7 92.4 10 11 1251a b 71325 14 15x3 或 0x2 或 x3 16 或 或 或254 137 137 1315 1315三、解答题(本大题共 11 小题,共计 88 分)17 (本题 6 分)解:原式2 4 3 分12 2 2 4 分2 2 6 分34218 (
14、本题 6 分)解: 1 5x4x2 4x 103(x2)3(5x4)4x 103( x2) 3 分x2 5 分检验:当 x2 时,3( x2)0,所以 x2 是增根,原方程无解 6 分19 (本题 8 分)(1)图略,2 分农村居民和城镇居民可支配收入分别为 1.6 万元、3.6 万元 6 分(2)2013 8 分20 (本题 8 分)(1)证明:点 D 是边 BC 的中点,DEAC,DFAB ,BDCD,DFBDEC90 2 分BFCE ,RtBDFRt CDE3 分BCABAC即ABC 是等腰三角形 4 分(2)BAC90,DEAC,DF AB, BACDFADEA90四边形 AFDE 是
15、矩形 6 分ABC 是等腰三角形,ABAC BFCE ,AB BFACCE AFAE矩形 AFDE 是正方形 8 分21 (本题 8 分)解:(1)2 分14(2)画出树状图或列举正确5 分解:所有可能的结果用树状图表示如下:开始第一期被淘汰 第二期被淘汰 所有可能出现的结果甲乙丙(甲,丙)(乙,甲)(甲,丁)(乙,丁)(丙,甲)(丙,乙)丙丁乙丙丁甲乙丁甲(甲,乙)(乙,丙)(丙,丁)丁 乙丙甲 (丁,甲)(丁,乙)(丁,丙)共有 12 种等可能的结果,其中甲在第二期被淘汰的结果有 3 种,所以 P(甲在第二期被淘汰) 6 分14(3)8 分1422.(本题 8 分)解:设该市 PM2.5
16、指数平均每年降低的百分率为 x,根据题意,得 60(1x) 248.6 3 分解得:x 10.1,x 21.9 (不合题意,舍去) 5 分所以该城市 PM2.5 指数平均每年降低的百分率为 10% 6 分由于 48.6(110%) 239.366 38,所以该市不能顺利达成中期目标 8 分 23 (本题 8 分)(1)A( 2,0),B(2,0),C(0,2) 3 分(2)由题意得,OP 2x 2y 2x 2( x22) 2 (x22) 23(2x2) 5 分12 14当 x22 时,即 x 时, OP2 取得最小值,最小值为 3即 OP 的最小值为 2 3当 x2、0 或 2 时,OP 2
17、取得最大值,最大值为 4即 OP 的最大值为 2 7 分所以 OP 长度的范围为: OP2 8 分324 (本题 8 分)(1)由图象可知:当 1x40 时,p 是 x 的一次函数,设 pkx b,将(1,11) 、 (40,50)代入得: ,解得: k b 11,40k b 50, ) k 1,b 10, )当 1x40 时,px 10 2 分(2)由图象可知:当 1x40 时,q 是 x 的一次函数,设 qkxb,将(1,79) 、 (40,40)代入得: ,解得: k b 79,40k b 40, ) k 1,b 80, )当 1x40 时,qx 80 4 分由题意可知:当 1x40 时
18、,yp (q 20)(x 10) (x8020) (x25) 21225 6 分(3)当 x25 时,y 取得最大值,最大值为 1225即这 40 天试销过程中,第 25 天获得的利润最大,最大利润为 1225 元8 分25 (本题 8 分)解:(1)ABC 为直角三角形1 分理由如下:CDAD,ACDA又D 为 AB 中点, AD BD,CDBD ,DCBBAACDDCBB180,ACBACDDCB90,ABC 为直角三角形. 3 分(2) 画图正确 4 分(3)连接 DMM 是弦 AE 的中点,D 为圆心,DMAE,点 M 在以 AD 为直径的圆上运动6 分在 RtABC 中, AC=6,
19、BC=8,AB=10,AD=5点 M 的运动路径长为 5 8 分26 (本题 8 分)解:(1)解:直线 CE 与 O 相切理由如下:连接 CO、DOACCD,COCO ,AO DO,ACODCO12CODO,13232434COEDCEDB,E90OCE90,即 OCCE 4 分直线 CE 经过半径 OC 的外端点 C,并且垂直于半径 OC,所以直线 CE 与O 相切5 分(2) 连接 BC,AB 是直径,ACB 90,ACBE,BC36 分24,ACBDEC 7 分 ,得 EC 8 分ABDC CBEC 12527 (本题 12 分)解:(1)DECM, DEC90,在 RtBCM 中,D
20、ECDsin30,DE 2 分CD2(2)过点 A 作 AECM 交 CB 于点 D,则 D点即为所用时间最短的登陆点理由如下:由第(1)问可知,D E CD2AD 最短,即为 ADD E 最短CD2由直线外一点与这条直线上点的所有连线段中,垂线段最短可知此时 D点即为所求5 分(3)如图,过点 C 做射线 CM,使得 sinBCM , 7 分1n过点 A 作 AE CM,垂足为 E,交 CB 于点 D,则 D 即为所用时间最短的登陆点9 分C BAM30 DEOABCDE1234ABCMED(4)此时 sinBCM ,易得 sinDAB ,13 13在 RtADB 中,AB 300,AD225 ,DB75 ,CD30075 2 2 2时间为 50100 12 分2