收藏 分享(赏)

生物质气化技术查询资料.pdf

上传人:精品资料 文档编号:11141339 上传时间:2020-02-09 格式:PDF 页数:26 大小:592.38KB
下载 相关 举报
生物质气化技术查询资料.pdf_第1页
第1页 / 共26页
生物质气化技术查询资料.pdf_第2页
第2页 / 共26页
生物质气化技术查询资料.pdf_第3页
第3页 / 共26页
生物质气化技术查询资料.pdf_第4页
第4页 / 共26页
生物质气化技术查询资料.pdf_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、生物质气化发电技术应用综述GasificationRentech-SilvaGas GasifierRentech-SilvaGas Biomass Gasification ProcessRentech-SilvaGas Biomass Gasification Process is a patented, commerciallyproven, gasification technology with over $100 million invested in technologyand assets. The gasifier can process a wide variety of

2、cellulosic feedstocksto produce syngas. The syngas can be used to produce renewable power or it canbe processed through our Rentech Process or other third-party fuel conversiontechnologies to produce drop-in, certified, renewable fuels. The gasifier hadsuccessfully operated in Burlington, VT for ove

3、r 2 years in partnership withthe Department of Energy (DOE), National Renewable Energy Laboratory (NREL) andBattelle Columbus Laboratory.Rentech-ClearFuels Biomass Gasification ProcessThe Rentech-ClearFuels biomass gasification technology produces hydrogen aswell as syngas from cellulosic feedstocks

4、 through the use of a High EfficiencyHydrothermal Reformer (HEHTR). The syngas can be used toRentech-ClearFuels Gasification Processproduce renewable power or be processed through Rentechs technology or otherthird-party fuel conversion technology to produce renewable drop-in fuels. TheRentech-ClearF

5、uels technology has operated at pilot scale in excess of 10,000hours and multiple third parties, including Idaho National Laboratory and HawaiiNatural Energy Institute, have independently validated the results of the pilotscale data. The Rentech-ClearFuels technology has been proven at demonstration

6、scale at Rentechs Energy Technology Center in Commerce City, CO through a $23million grant received from the U.S. Department of Energy under the AmericanRecovery and Reinvestment Act.随着化石燃料的逐渐枯竭、环境问题的日益严重及全球气候异常等,寻求新的可再生、洁净的能源资源已经迫在眉睫。生物质作为可再生、几乎无污染的资源,其开发和利用越来越受到人们的重视。生物质是重要的可再生能源,我国生物质能资源样多量大,可用于发

7、电的资源相当丰富。生物质发电技术和产业有着良好的发展前景。1. 国家政策扶持我国自1998年起实施的中华人民共和国节能法就明确提出“国家鼓励开发利用新能源和可再生能源”。 可再生能源是重要的战略替代能源,对增加能源供应,改善能源结构,保障能源安全,保护环境有重要作用,是建设资源节约型、环境友好型社会和实现可持续发展的重要战略措施。人类能够长久依赖的未来能源必须储量丰富、可再生利用且无环境污染。以植物为主,每年以近2000亿吨的速度不断再生的生物质资源将是人类未来的理想选择。大力开发生物质资源,对于改善我国以化石燃料为主的能源结构,延长化石燃料使用时间,改变能源的生产方式和消费方式,建立可持续发

8、展的能源系统,促进社会经济的发展和生态环境的改善具有重大意义。从2006年1月1日起,全国开始正式实施了中华人民共和国可再生能源法,在国家2006-2020年中长期科学和技术发展规划纲要中就提出了包括生物质能在内的可再生能源低成本规模化开发利用。同时国家还制定了一系列的优惠政策来鼓励和支持开展生物质能的研究和利用,生物质清洁能源项目将享受国家财政贴息,并且生物质发电可以优先上网。国家发改委2006年1月4日以发改能源【2006】7号文件印发了可再生能源发电价格和费用分摊管理试行办法,生物质发电上网每度电可以补贴0.25元。在财政部、发展改革委、农业部、税务总局、国家林业局联合印发的关于发展生物

9、能源和生物化工财税扶持政策的实施意见中指出国家将在财税政策上大力扶持生物质能源的发展。同时在“十一五”期间,国家财政也将加大对生物质能源和煤制油等石油替代能源开发的资金投入,以缓解我国面临的石油安全问题。2. 生物质发电技术分类与比较在生物质发电技术中,比较成熟的有直接燃烧发电和生物质气化发电两种类型。直接燃烧发电的过程是生物质与过量空气在锅炉中燃烧,产生的热烟气和锅炉的热交换部件换热, 产生出的高温高压蒸汽在蒸汽轮机中膨胀做功发电。气化发电是一种更为洁净的利用方式,其过程是生物质通过热化学方法转化为气体燃料,净化后的气体燃料直接被送入锅炉、内燃机、燃气轮机的燃烧室中燃烧或者在高温燃料电池中来

10、发电。美国能源部(DOE)在1997年归纳了生物质燃料发电技术的特点,对比直接燃烧与生物质整体气化联合循环(BIGCC) 发电参数。直接燃烧的电站容量是50MWe、效率是23.0 %、投资成本是1965/ kWh ,总运行费用5.50 C/ kWh ;BIGCC 的电站容量是75MWe、效率是36.0 %、投资成本是2102/ kWh ,总运行费用3.98 C/ kWh。显然,生物质气化发电技术比直接燃烧的效率要高很多,而且运行费用也低。所以,我们要大力发展生物质气化发电技术,使生物质发电更具有竞争力。3. 国外生物质气化发电现状生物质气化及发电技术在发达国家已受到广泛重视,如奥地利、丹麦、芬

11、兰、法国、挪威、瑞典和美国等国家生物质能在总能源消耗中所占的比例增加相当迅速。奥地利成功地推行了建立燃烧木材剩余物的区域供电站的计划,生物质能在总能耗中的比例由原来大约 2%-3%增到 1999 年的10%,并打算在本世纪末增加到25%,到目前为止该国已拥有装机容量为1-2MWe的区域供热站80-90座。瑞典和丹麦正在实施利用生物质进行热电联产的计划,使生物质能在转换为高品位电能的同时满足供热的需求,以大大提高其转换效率。1991 年,瑞典供热及热电联产所消耗的燃料,26%是生物质。一些发展中国家,随着经济发展也逐步重视生物质的开发利用,增加生物质能的生产,扩大其应用范围,提高其利用效率。菲律

12、宾、马来西亚以及非洲的一些国家,都先后开展了生物质能的气化,成型固化、热解等技术的研究开发,并形成了工业化生产。生物质气化发电技术主要有以下三种方法:带有气体透平的生物质加压气化、带有透平或者是引擎的常压生物质气化、带有 Rankine 循环的传统生物质燃烧系统。生物质整体气化联合循环发电技术(BIGCC)作为先进的生物质气化发电技术,通过采用两级燃烧方式,利用两种工质将勃雷登(Brayton)循环和朗肯循环叠加在一起,具有较高的发电效率和较大的发电规模,从 1990 年开始得到了广泛的研究。传统的 BIGCC 技术包括生物质气化、气体净化、燃气轮机发电及蒸汽轮机发电。由于生物质燃气热值低(约

13、 1200kcal/m3),炉子出口气体温度较高(800以上),要使 BIGCC 具有较高的效率,必须具备两个条件,一是燃气进入燃气轮机之前不能降温,二是燃气必须是高压的。这就要求系统必须采用生物质高压气化和燃气高温净化两种技术才能使 BIGCC 的总体效率较高(40%)。目前欧美一些国家正开展这方面研究,如美国 Battelle (63MW)和夏威夷(6MW)项目、欧洲英国(8MW)、瑞典(加压生物质气化发电 4MW)、芬兰(6MW)以及欧盟建设 3 个 712MW 生物质气化发电 IGCC示范项目,其中一个是加压气化,两个是常压气化。但由于焦油处理技术与燃气轮机改造技术难度大,存在许多问题

14、,如系统未成熟,造价很高,限制了其应用推广。以意大利 12MW 的 BIGCC 示范项目为例,发电效率约为 31.7%,但建设成本高达 25000 元/kW,发电成本约 1.2 元/kWh,实用性很差。近年欧美开展了其它技术路线的研究,如比利时(2.5MW)和奥地利(TINA,6MW)开展的生物质气化与外燃式燃气轮机发电技术,美国的史特林循环发电等,但技术仍未成熟,成本较高。3.1. 国外生物质整体气化联合循环发电示范项目介绍3.1.1. 美国 Battelle美国在利用生物质能发电方面处于世界领先地位。美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,生产一种中

15、热值气体,不需要制氧装置,此工艺使用两个实际上分开的反应器:气化反应器,在其中生物质转化成中热值气体和残炭;燃烧反应器,燃烧残炭并为气化反应供热。两个反应器之间的热交换载体由气化炉和燃烧室之间的循环沙粒完成。表1 给出了Battelle示范电厂气化炉的产气组分和热值,图1的工艺流程图则表明了两个反应器以及它们在整个气化工艺中的配合情况。这种Battelle/FERCO工艺与传统的气化工艺不同,它充分利用了生物质原料固有的高反应特性。生物质的气化强度超过 146000kg/ hm2,而其他气化系统的气化强度通常小于 1000 kg/hm2。Battelle气化工艺的商业规模示范建在弗蒙特州的柏林

16、顿 McNeil 电站,该项目的一期工程,用 Battelle 技术建造日产 200 吨燃料气的气化炉,在初始阶段生产的燃料气用于现有的 McNeil 电站锅炉。二期工程,将安装一台燃气轮机来接受从气化炉来的高温燃气,组成联合循环。该气化设备于 1998 年完成安装并投入运行。 表 1 Battelle示范电厂气化炉产气组分和热值气体组分(%) 热值(MJ/m3)CO H2 CH4 CO2 C2H4 C2H644.4 22 15.6 12.2 5.1 0.7 17.3图 1 Battelle/FERCO 工艺流程图3.1.2. 瑞典 VARNAMO瑞典VARNAMO BIGCC 电厂是由Syd

17、kraft AB公司投建的,于1993年正式运行,是世界上首家以生物质为原料的整体气化联合循环发电厂,电厂装机容量为6MW,供热容量为9MW,整体电效率为32%(除自用电外)。系统流程见图2。生物质原料(主要是木屑和树皮)经过干燥粉碎后,在带有密闭阀门的上下料斗中加压后进入气化炉。电厂采用Foster Wheeler公司生产的增压CFB气化炉,操作温度为9501000,压力为1.8MPa,采用空气作为气化剂,从燃气轮机的压缩机抽调10%左右的空气,经二次压缩后由流化床底部布风板通入。产气经过旋风分离器分离后,进入烟气冷却器冷却至350400,然后通过高温管式过滤器净化,净化后燃气组分和热值见表

18、2。净化燃气通过TYPHOON燃气轮机(4.2MW)发电;燃气透平排气进入余热锅炉,连同烟气冷却器一起产生蒸汽(4MP,455),蒸汽进入汽轮机发电(1.8MW),同时供热(9MW)。VARNAMO电厂从1993年开始运行,系统整体运行时间达3600h/a,验证了生物质增压气化和高温烟气净化系统的可行性,得到了一些宝贵的运行经验。在运行中出现了冷却器的沉灰和结垢等现象,实验表明,使用MgO作床料和采用底灰再循环方式可以有效解决这些问题。系统采用陶瓷管式过滤器,在运行1200h左右后发生机械应力破碎,在1998年改用金属管式过滤器,正常运行时间达2500h,可以有效地过滤飞灰和重焦油。通过对燃气

19、轮机的燃烧室、燃烧器和空气压缩机进行改造,使低热值产气(3.44.2MJ/m3)能稳定燃烧,燃气轮机能在40%100%的电厂负荷下稳定运行,但低负荷运行时CO排放量较大(0.02%)。表 2 VARNAMO电厂气化炉产气组分和热值气体组分 热值(MJ/m3)CO(%) H2(%) CH4(%) CO2(%) N2(%) 苯(mg/m3) 轻焦油(mg/m3)16-19 9.5-12 5.8-7.5 14.4-17.5 48-52 5000-6300 1500-2200 5.0-6.3图2 瑞典VARNAMO BIGCC 电厂系统流程示意图3.1.3. 意大利 TEF2002年6月,意大利TEF

20、(THERMIE ENERGY FARM)BIGCC示范电厂在Cascina建成。该电厂生物质消耗量为8230kg/h,发电容量为16MW,发电效率为31.7%(除自用电外)。电厂投资4100万欧元(欧盟THERMIE出资34%),建设成本为2300欧元/kW。该系统流程见图3。电厂采用Lurgi制造的常压CFB气化炉和常温湿法烟气净化系统。原料(短期轮作物和木屑)在微负压环境下,利用余热锅炉乏气进行干燥,空气经压缩和预热后由气化炉底部布风板进入。产气通过空气预热器和烟气冷却器进行冷却,再通过二次旋风分离和布袋除尘,然后在水洗塔内彻底清除焦油和其它污染物(NH3,HCN,HCl等)。除尘器捕集

21、的飞灰与灰渣一起排放,水洗塔排水经处理后排放。净化燃气经过冷却压缩后,其组分和热值如表3所示。燃气与经过压缩比为15.4的多级空压机压缩的空气在燃烧室内混合燃烧。燃气轮机采用Nuovo Pignone的pgt10机组,发电容量为11MW。燃气轮机排气经余热锅炉回收热量,连同烟气冷却器一起产生蒸汽(5.5MPa,470),蒸汽进入汽轮机发电(5MW)。 表 3 TEF示范电厂气化炉产气组分和热值气体组分(%) 热值(MJ/m3)CO H2 CH4 CnHm CO2 N2 H2O22 17 4 2 13 41 1 7.4图 3 意大利TEF示范电厂系统流程图3.1.4. 英国 ARBRE英国ARB

22、RE BIGCC电厂于1999年建成,发电容量为8MW,系统整体电效率为31%。电厂所用原料来自电厂周围种植的柳树和白杨树,气化炉和催化裂解炉的灰渣及处理污水所得的污泥用作树木的有机肥料。电厂采用2台TPS常压CFB炉,一台作为气化炉,操作温度为850900,另一台加入催化剂作为催化裂解炉。燃气通过冷却器换热后,经过布袋除尘和水洗,除去焦油和其它污染物。净化后的燃气压缩至2MPa后进入燃气轮机(Alstom Power公司的TYPHOON 燃气轮机)发电。整体系统与意大利TEF示范电厂大致相同。3.2. 国外生物质气化项目概括大型生物质气化循环发电系统包括原料预处理、循环流化床气化、催化裂解净

23、化、燃气轮机发电、蒸汽轮机发电等设备,适合于大规模处理农林废物。表 4 给出了国外生物质气化项目的概括。表 4 国外生物质气化项目概括工程组织/项目名 工程概况 国家 原料 规模 备注FOSTER WHEELER公司,原奥斯龙公司 常压/压力 CFB气化发电 芬兰 木片,树皮,泥煤 2t/h-27t/h 该公司的全尺寸 CFB 气化炉,以 MSW 为原料已在瑞典投入商业运行THERMIE 能源农场项目Bioelettica S.P.A. 速生能源林示范,Lurgi 公司CFBIGCC 技术 意大利 木片 11.9MW 1994 年开始计划组织,常压鼓空气循环床气化Varnamo IGCC 项目

24、(Sydkraft) 压力循环流化床IGCC,空气气化 瑞典 废木材 6MW-9 MW 第一座成功运行的生物质 IGCC 电厂BGF 项目(Westinghouse,PICHTR/IGT,DOE) 压力鼓泡流化床IGCC 美国 蔗渣,能源林 100t/d 在 1997 年 8 月到 11 月期间试运行BIOSYN 项目 氧气气化产品气合成甲醇 加拿大 木头 已投运VERMONT 工程BURLINGTON 电力公司 Battelle 工艺的IGCC 示范 美国 木片 200t/d Battelle Columbus 双流化床工艺,燃气热值16-18MJ/Nm3IMTRAN VOIMA 水蒸气干燥

25、,注蒸汽联合循环 芬兰 高水分木柴,泥煤,造纸废液 鼓空气压力气化,注水蒸气联合循环JWP ENEPGYPRODUCTS 公司 流化床气化 美国 木头,农业废弃物,RDF 25 MW 已有 3 台木柴流化床气化装置分别在 Oregon,Califomia and MissouriLURGIUMWELTTECHNIKGMBH 循环流化床气化发电、水泥、石灰窑供热 德国 RDF,木头,树皮等 14 MW50-100 MWPOWER SOURCES,INC. 不同的供热、发电、产蒸汽商用气化装置 美国 木片,稻壳,造纸废液 最大达330t/d 已有 2 台废木材气化器,一台稻壳气化器投运THERMO

26、CHEM 公司(MTCI) 脉动燃烧水蒸气流化床气化 美国 木片,稻壳,造纸废液 20t/d-50t/d 间接加热流化床气化,燃烧增加传热,典型燃气热值 9-12MJ/Nm3PRODUCERS RICEMILLS ENEGY SYSTEMS公司 多区固定炉排气化器,产热、蒸汽和电能 美国 稻壳,秸秆,树皮, 10-1000t/d 在美国,澳大利亚,马来西亚和哥斯达黎加有 18套系统投运SUR-LITE CORP. 流化床气化,产煤气和蒸汽 美国 木片,秸秆,稻壳等 120t/d 已有 4-5 个商业运行装置TPS TERMISKAPROCESSORAB(原 STUDSVIK 公司) 流化床气化

27、器(IGCC) 瑞典 木柴,树皮,泥煤,秸秆,RDF 最大 50 MW 其技术已应用于许多大型气化系统Tampella power Inc. 流化床气化 芬兰 U-GAS 气化工艺WELLMAN PROCESSENGINEERING 上流式固定床气化装置 英国 木头,褐煤等 最大直径3 米 提供气化器和净化系统定制设计的商业服务BRIGHTSTARSYNFUELS CO. 外热式水蒸气生物质重整中热值气化技术 美国 木屑,树皮,蔗渣,MSW 中热值气化技术,典型热值 12.5 MJ/Nm3BIG-GT 工程(STATEBAHIA,BRAZIL,ELECTRO-BRAZ,SHELL, 世界银行)

28、 生物质整体气化联合循环以验证BIG-GT 的商业可行性 巴西 木头,桉树能源林 采用 TPS 技术,预计系统效率可达 47ARBRE 项目(TPS 技术) 8MW CFBIGCC 和速生林工程 英国 8 MW 热气净化系统也是示范内容,空气净化COMBUSTIONCONSULTANTS LTD.) 固定床气化燃烧整合系统,提供高温清洁的烟气 新西兰 木片,树皮等 2-60Mbtu/hr 投运装置超过 600 台FERCO (Future energyresources Co.) 高效、大型气化系统发展商 美国 木片 5 MW4. 国内生物质气化发电现状我国的生物质气化发电技术的研究起步比较早

29、,早在上世纪 60 年代,我国就开始了生物质气化发电的研究,研制出了样机并进行了初步推广,还曾出口到发展中国家,后因经济条件限制和收益不高等原因停止了这方面地研究工作。近年来,随着能源和环境问题日益严峻,化石燃料逐渐枯竭,燃烧化石燃料所造成的温室效应和环境污染已经引起了各国政府的高度重视。由于能源安全是一个国家稳定运行经济持续发展的关键,因此寻求新的可再生、洁净的能源资源已是十分紧迫。生物质能以其可再生、无污染、资源量大、分布广和 CO2 零排放等优点又重新受到了人们的广泛关注。而目前我国随着乡镇企业的发展和人民生活水平的提高,一些缺电、少电地方也迫切需要电能;其次是环境问题,丢弃或焚烧农业废

30、弃物将造成资源浪费和环境污染,生物质气化发电可以有效的利用农业废弃物。所以,以农业废弃物为原料的生物质气化发电有逐渐得到人们的重视。4.1. 国内生物质气化发电概况我国原有的气化发电技术都是以谷壳为主的固定床技术,而且发电规模都较小,最大只有200kW,经济效益不显著。“九五”期间进行 1MW 的生物质气化发电系统研究,旨在开发适合中国国情的中型生物质气化发电技术。1MW 的生物质气化发电系统已于 1998 年 10 月建成,采用一炉多机的形式,即 5 台 200kW 发电机组并联工作,2000 年 7 月通过中科院鉴定后投入小批量使用。该系统在很多方面比 200kW 气化发电有了改善,但由于

31、受气化效率与内燃机效率的限制,简单的气化-内燃机发电循环系统效率低于 18%,且单位电量的生物质消耗量一般大于 1.3kg(dry)/kWh。“十五”期间,以中科院广州能源所为主承担的国家 863 计划在 1MW 的生物质气化发电系统的基础上,研制开发出 46MW 的生物质气化燃气蒸汽联合循环发电系统,建成了相应的示范工程,燃气发电机组单机功率达 500kW,系统效率也提高到 28%,虽然与国外的技术仍然有一定的差距,但也为我国生物质气化发电技术的产业化打下了基础。从燃气发电过程上看,气化发电可分为内燃机发电系统、燃气轮机发电系统及燃气蒸汽联合循环发电系统。内燃机发电系统以简单的燃气内燃机组为

32、主,可单独燃用低热值燃气,也可以燃气、油两用,它的特点是设备紧凑,系统简单,技术较成熟、可靠,我国基本上使用的都是内燃机发电系统和内燃机燃气蒸汽联合循环发电系统。但由于受气化效率和内燃机效率的限制,气化发电的总效率都比较低。从纯技术的角度看,生物质 IGCC 可以有效地提高生物质气化发电的总效率,但由于受焦油处理技术与燃气轮机技术的限制,在中国研究发展生物质 IGCC 仍比较困难。所以如何利用现已较成熟的技术,研制开发在经济上可行,而效率又有较大提高的系统,是目前我国发展生物质气化发电的一个主要课题。4.2. 国内生物质气化发电项目简介我国的生物质气化发电项目主要是中小型的气化发电系统,目前在

33、运行的主要有固定床和流化床两种,固定床的机组容量一般都小于 200kW,流化床机组目前最大的容量为 46MW,以下将就这两种机组在国内的实际应用做简单的介绍。4.2.1. 济南市历城区董家镇柿子园村“200kW 固定床生物质气化发电示范系统”该气化发电示范系统是由山东省科学院能源研究所设计建造的,发电容量为200kW,年消耗秸秆约2000t,年发电量约为140万kWh,可替代燃煤700t(标煤),该系统的单位投资约为7000元/kW,投资回收期为10年左右。采用的是“二步法生物质固定床气化发电技术”, 该技术可以使秸秆气化过程中产生的有害物质焦油再次裂解,一定程度上克服了原有气化技术中燃气净化

34、困难、易造成二次污染的缺点且回收利用了发动机尾气的部分余热,提高了能源的利用率,气化效率比其他固定床气化器提高810个百分点。该系统的工艺流程图见图4。系统采用螺旋推进式生物质进料方式,原料不需进行精细的破碎处理,粒度在10100mm均可顺畅地进料,原料适应范围广,如玉米芯、花生壳、棉柴、玉米秸和刨花锯末等均可作为原料。生物质原料首先经过简单破碎后被送入加料器中,然后由螺旋推进器送入气化炉中。生物质原料首先被隔绝空气间接加热而发生热解反应;热解后的产物(热解气和残炭)与预热的空气发生强烈的氧化反应而产生高温区,热解气在高温区域发生二次裂解,其中的焦油被消除;二次裂解后的气体通过下部炭层,经还原

35、反应完成气化,得到含一氧化碳、氢、甲烷等可燃成分的低热值燃气。燃气经过冷却净化后送入内燃式发电机组,通过缸内燃烧驱动曲轴旋转装置,从而带动发电机产生电力。发动机的高温排气提供热解过程所需要的热量。图 4 两步法生物质固定床气化发电机组流程图1.定量加料器;2.裂解器;3.气化炉;4.过滤器;5.风机;6.阻火器;7.内燃机;8.发电机4.2.2. 海南三亚“1MW 生物质流化床气化发电系统”该气化发电系统是由中科院广州能源所设计,与海南三亚木材厂组成“三亚绿源生物质有限公司”共同建成,充分利用当地木材厂生产废木屑进行发电,既处理了生产废料又发了电,年电厂产值约 240多万元,利润约 80多万元

36、。该系统的发电容量为 1MW,气化效率大约在 75%左右,系统发电效率在 1518%之间,单位电量对原料的要需求量为 1.251.35kg/kWh 木屑。系统的流程图见图 5。生物质原料(木屑等)从料仓进入螺旋给料机,由螺旋给料机送入炉膛,产生的气化气经过惯性分离和旋风除尘后,进入焦油催化裂解和气体净化装置,净化后的可燃气送入 5 台并联的 200kW 的内燃机机组中发电。表 5 为 820时木屑气化气化炉出口处的产气组分和低位热值。该气化系统也可以采用谷壳作为气化原料。表 5 820时气化炉产气组分和低位热值温度() 气体组分(%) 低位热值(MJ/m3)H2 CO CO2 CH4 C2H6

37、 C2H2 N2820 6.4 19.9 8.7 4.7 0.09 0.28 59.9 5.1图 5 1MW生物质循环流化床气化发电系统流程图5. 生物质气化发电技术分类生物质气化发电技术根据不同的划分标准,可以分为各种不同的类型,主要根据其所采用的气化炉、气体机和气化规模来进行分类,以下予以分别介绍。5.1. 气化炉中国对各种气化方式都有研究,已完成了多种气化炉的研制,目前已使用的气化炉有上吸式、下吸式、敞口式和流化床等。从原理上讲,各种气化炉都可以用于气化发电,但目前研究完成并正常运转的主要有三种,即敞口下吸式,下吸式及循环流化床(见表 6),发电功率可以从几千瓦到几千千瓦,这为气化发电技

38、术的进一步发展提供了条件。表 6 中国生物质气化发电中的气化炉型式气化炉型式 层式下吸式 下吸式 循环流化床燃料种类 树皮,木块 谷壳,木块 谷壳,木屑规模 2.030.0kW 60200kW 4004000kW燃气热值 4100-5300KJ/m3 3800-4600KJ/m3 4600-6300KJ/m3气化温度 1100 700-800 650-850冷气效率 70% 50% 6575%固定床气化炉对原料的适应性比较好,大块原料可以不经预处理直接使用,结构简单,制造容易,初始的建设投资比较小,但是固定床气化炉的升温速率慢,生产强度小,发电规模一般都低于200kW,燃气的热值低,发电效率一

39、般都低于 13%,运行投资高,综合经济性很差,我国早期的一些固定床气化炉正因为经济性太差好多早已被迫停炉。而流化床气化炉虽然结构复杂,建设投资高,但是运行成本很低,生产强度大,气体热值能提高了 20%左右,且易于大型化,有较好的经济性,将是今后气化发电技术的主要发展方向。5.2. 气体机国外的 BGPG 系统采用的大多是燃气轮机,但受我国焦油处理和燃气轮机技术的限制,我国采用更多的气体机是内燃机。气体机主要燃烧的是低热值的生物质气。我国低热值气体机发展较差,小功率(100KW)基本都由柴油机改装,未有定型产品。大功率(500KW)的机组也有研究,但由于排气温度和控制技术未能过关,目前仍未有成熟

40、产品。现在已有定型产品有 160KW 和 200KW 两种。由于单机功率较小,所以中等规模的气化发电系统必须由多台气体机并车,这在一定程度上会影响气化系统功率的进一步提高。5.3. 发电规模从发电规模上分,生物质气化发电系统可分为小型、中型、大型三种。小型气化发电系统所需的生物质数量较少,简单灵活,多采用固定床气化设备,主要用于农村照明或作为中小企业的自备发电机组,一般发电功率小于200 kW。固定床气化设备又可分为上吸式、下吸式和开心层下式3 种,其中下吸式炉型有利于减少炉内热解生成的焦油含量,因而被广泛采用。中型生物质气化发电系统主要作为大中型企业的自备电站或小型上网电站,是当前生物质气化

41、发电技术的主要方式,所需的生物质原料量较大,可适应一种或多种不同的生物质原料,气化方式以流化床气化为主,功率一般为5003 000 kW。流化床气化技术又包括鼓泡床气化、循环流化床气化及双流化床气化3 种,其中研究和应用最多的是循环流化床气化技术,对生物质原料适应性强,也可混烧煤、重油等传统燃料,生产强度大,气化效率高。大型生物质气化发电系统主要作为上网电站,它适应的生物质较为广泛,所需的生物质数量巨大,必须配套专门的生物质供应中心和预处理中心,系统功率一般在5000 kW以上,虽然与常规能源相比仍显得非常小,但在技术发展成熟后,它将是今后替代常规能源电力的主要方式之一。一般来说,发电规模越大

42、,单位发电量需要的成本就越低,也越有利于提高热效率和降低二次污染。6. 生物质气化发电的技术经济分析生物质气化发电包括小型、中型和大型气化发电三种模式。小型气化发电指采用简单的气化内燃机发电工艺,发电效率一般在1420%,规模一般小于3MW。中型气化发电指除了采用气化内燃机(或燃气轮机)发电之外,同时增加余热回收和发电系统,气化发电系统的总效率可达到25%35%。另外,大规模的气化燃气轮机联合循环发电系统作为先进的生物质气化发电技术,能耗比常规系统低,总体效率可大于40%,但关键技术仍未成熟,尚处在示范和研究阶段。6.1. 小型生物质气化发电系统小型生物质气化发电系统一般指采用固定床气化设备,

43、发电规模在 200KW 以下的气化发电系统。小型生物质气化发电系统主要集中在发展中国家,特别是非洲、印度和中国等东南亚国家。美国、欧洲等发达国家虽然小型生物质气化发电技术非常成孰,但由于发达国家中生物质能源相对较贵,而能源供应系统完善,对劳动强度大,使用不方便的小型生物质气化发电技术反应等非常少,只有少数供研究用的实验装置。6.1.1. 小型气化发电系统的技术性能中国有着良好的生物质气化发电基础,我国早在 60 年代初就开展该方面工作。研究了样机并做了初步推广,还曾出口到发展中国家,一度取得了较大的进展。但由于当时经济环境的限制,谷壳气化发电很难在经济上取得较好收益,在很长一段时间上没有新的改

44、进。近年来,中国的经济状况发生了明显的变化, 因而利用谷壳气化发电的外部经济环境有了明显的改善:首先是中国能源供应持续紧张,电力价格居高不下,气化发电可以取得显著的效益;其次是粮食加工厂趋向于大型化,谷壳比较集中,便于大规模处理,气化发电的成本大大降低;最后是环境问题,丢弃或燃烧谷壳会产生环境污染,处理谷壳已成为一种环保要求。目前 160kW 和 200kW 的生物质气化发电设备在我国已得到小规模应用,显示出一定的经济效益。在原来谷壳气化发电技术的基础上,近年来中国对生物质气化发电技术作了进一步的研究,主要对发电容量大小和不同生物质原料进行了探索,先后完成了 2.5 到 200KW 的各种机组

45、的研制,其主要特点见表 7。 表 7 中国生物质气化发电技术主要特点功率(KW) 2.5 5.5 12 60 160 200总效率(%) 11.5 16 14 18 11.5 12.5气化炉 层式下吸式 下吸式净化 水 洗 过 滤发电机 内燃机燃 料 生物质 生物质和柴油 谷壳中国现在生产的谷壳气化发电设备主要有三种规格,即 60KW、160KW、200KW。由于气化炉采用的是较简单的下吸式气化炉,气化效率等各种指标都较差,以最典型的 200KW 机组为例,其发电效率也仅为 12.5% (见表 8)。表 8 200KW 谷壳气化发电机组的主要资料参 数 投 资 (元)气化炉直径(mm) 200

46、0 气化炉 60000.气体热值(MJ/m3) 4100 净化器 30000.气化效率(%) 47 发电设备 320000.水洗塔直径 (mm) 500 原料系统 30000.气体停留时间 (s) 6.0 管道 10000.耗水量(m3/h) 3050 水处理 40000.压缩比 9 基建 50000.标定转速(r/min) 750 管理费 10000.热效率( %) 26.6 总投资 550000.6.1.2. 小型气化发电系统的经济性谷壳气化发电机组的固定投资主要包括设备和基建两部分。表 8 列出了 200KW 气化发电机组的投资组成,其中设备投资是主要的,单位功率的投资随容量的增大而降低

47、(见图 6),而且发电设备(内燃机)所占的份额越来越大,这也是小功率气化发电机组经济性差的主要原因。图 6 单位投资随功率的变化谷壳气化发电的运行成本包括燃料和消耗材料等。由于现在谷壳不能作饲料,市场价已非常低,有的地方甚至当废料丢弃,所以燃料价主要指谷壳的收集、运输与处理费等。消耗材料主要指发动机使用的润滑油和除焦用的冷却水。维修费主要指零配件的更换与修理。电力价格以国内大部分地区的电网价为基准。具体内容见表 9。从表中可知, 200KW 谷壳气化发电机组在目前条件可以取得可观的经济效益。从成本的敏感性上分析,可以发现,影响进行成本最大的因素是机组容量大小、燃料开支和运行时间三方面,图 7

48、是在原料为 100 元/吨, 开工时间为 6000 小时/年情况下发电成本随机组容量的变化。从图可以发现,小功率的气化发电成本比柴油发电还要高。图 8 是在现有技术条件下发电成本随原料价格的变化情况。图 9 是原料为 100 元/吨时,运行时间对发电成本的影响,它说明了技术稳定性对降低成本的重要性。表 9 200KW 谷壳气化发电机组运行成本及经济效益项目 数量 单价 总开支(元/年)运行成本:人工 10 人 6000 元/人 60000.燃料 2361.6 吨/年 100 元/吨 236160.润滑油 3600kg/年 7 元/kg 25200.水 16000m3/年 0.5 元/m3 80

49、00.投资费用:投资利息 10%总投资 55000 元/年 55000.设备维修 5%机组投资 25000 元/年 25000.总费用 409360.经济效益:产品收益 120 万 kWh 0.5 元/kWh 600000.年利润 190460.投资回收期(不考虑通胀因素) 2.9(年)图 7 发电成本随机组容量的变化 图 8 发电成本与生物质价格的关系图 9 发电成本与运行时间的关系在现有技术条件下,由于各地原料、电价不同,谷壳气化发电的经济效益将有较大的变化。单纯从经济上考虑,谷壳气化发电可行的标准是气化发电机组的年收益高于设备的折旧费,或加上设备折旧费用后发电成本低于 0.5 元/ kWh。由图 7图 9 可知,谷壳气化发电设备要能取得经济效益,必须符合以下条件:(1)在现有技术条件下,原料价值不能高于 150 元/吨(包括运输及预处理费用);(2)在原料为 100 元/吨,机组运行时间为 6000 小时/年时,气化发电容量不能低于 60KW;(3)在发电容量为 200KW,原料单价为 100 元/吨时,设备年运行时间不能低于 2500 小时。6.2. 中型生物质气化发电系统中型生物质气化发电系统一般指标采用流化床气化工艺,发电规模在 4003000

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报