1、DG48 BS DG8AP Vol.48 No.82012A88B6 DG895906DH ACTA METALLURGICA SINICA Aug. 2012 pp.895906ADBFACBLAOA8BFBMBQ 304 A2BGAJAKBBB9ARAQA9AXAVB3AIA3BUC3C51)BYC8C61) Tikhonova M 2) Belyakov A 2)Kaibyshev R 2) Rohrer G S 3) C1C2BV1)1)C1A6CBBRCUCZDFCEBRC7CZB3, D5B92550492) Belgorod State University, Pobeda 85
2、, Belgorod, 308015, Russia3) Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USABN BI C1BOCHCCCWDA2DC304BCCRBDDCALB0B5BEAFAYCM =2DAAKC6BC(MF) CMD0C6BJCC(DR)CW,B7BE 900A6BGBAAVD92120 min. BLAKDJD6AMBWC7D8C7 (EBSD) A5D6CMBHBODABBB0DBB0BJAUAP (FPA), D5BIC
3、ODCALDABBB0A8BUB0BF (GBCD) CMBBB0DBB0BF (GBPD). AWCDB3DE, 2DCDCALCF3n(n=1, 2, 3)A8D1BBB0DAATCFBUBCC1CF 45%,B7B1B9AVD9CFC8CF, AWBXBK3BBB0CPALBXBKD3, 9 CM 27 BBB0ATCFDFDIC0BNAN. B0B5BE MF CM DR CHCCCWB7BE 120 min AVD9DADCALCF, DIABCVARAABBB0(CFCYA13n)DIABBUA3111ACCYBBB0CM 110B3BQBBB0B4CR,B3DEDCALCFBUC
4、PB9DEBQDABBB0C2BZ (GBT);B9DJCCA8A4BCC6BUAJBN,DIABCVARAABBB0DA GBPDB9DCALCFCPB9BQCTBUA9, B3DEAVD9C0AXDAAABSCFC8AH 304BCCRBDDA GBPDAPBQCTAHBZ.ALASA6 304BCCRBD, BBB0A8BUB0BF, BBB0DBB0BF, BBB0C2BZBRB7AFAHB0AN TG111 BCBEA1B5B2 A BCBOA0AN 04121961(2012)08089512GRAIN BOUNDARY PLANE DISTRIBUTIONS IN304 STEE
5、L ANNEALED AT HIGH TEMPERATUREAFTER A PARALLEL PROCESSING OF MULTIPLEFORGING AND DIRECT ROLLINGFANG Xiaoying 1), LIU Zhiyong 1), Tikhonova M 2), Belyakov A 2), Kaibyshev R 2), Rohrer G S 3),WANG Weiguo 1)1) School of Mechanical Engineering, Shandong University of Technology, Zibo 2550492) Belgorod S
6、tate University, Pobeda 85, Belgorod, 308015, Russia3) Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USACorrespondent: WANG Weiguo, professor, Tel: (0533)2786835, E-mail: Supported by National Natural Science Foundation of China (Nos.50974147 and 511
7、11120089) andNatural Science Foundation of Shandong Province (No.2009ZRB01176)Manuscript received 20120313, in revised form 20120508ABSTRACT It is wellrecognized that low CSL boundaries are highly populated in the grainboundary character distribution (GBCD) for austenitic stainless steel (SS) proces
8、sed by low strain andsubsequent annealing. However, largestrain plus annealing typically tends to introducing numerousrandom high angle grain boundaries (RHABs) instead of producing high fraction of 3, 9 and 27boundaries. In this case, the distribution of grain boundary planes of RHABs must be very
9、relevantto the properties of material. The current study is to explore the evolution of GBCD and grainboundary plane distribution (GBPD) in 304 austenitic SS after large strain and subsequent annealingusing electron backscatter diffraction (EBSD) and fiveparameter analysis (FPA). After solid solutio
10、n* CCA9D8BGC0D0DDB4C1A1 50974147 CM 51111120089 A3A1C2A7CFD8BGC0D0DDB4C1A1 2009ZRB01176 D4CVCZD5CCBIBMAQ : 20120313, CZD5COB8BIBMAQ : 20120508DGBOB2 : AUCA, 1971A9CC,BACQDOI: 10.3724/SP.J.1037.2012.00132A0896 B3A0D3A0CYA0AJ DG48 BStreatment, 304 steel samples were separately processed by multiple fo
11、rging (MF) and direct rolling(DR) with true strain =2 followed by same annealing at 900 A5 for 2120 min. Then the GBCDsand GBPDs of the two groups of samples were examined. The results show that the total 3n (n=1,2, 3) special boundaries in any sample as processed take a length fraction of lower tha
12、n 45% out ofthe entire boundaries, and with annealing proceeding the incoherent 3 boundaries tend to be tunedinto coherent ones and consequently the summation fractions of 9 and 27 boundaries decreaseaccordingly. In the two samples which were separately processed by MF and DR but followed by thesame
13、 annealing at 900A5for 120 min, their random boundaries or general high angle boundaries (3nspecial boundaries filtered) mostly appeare to be the 111 twist and 110 tilt boundaries, indicatingthere exist grain boundary textures (GBT) in both samples. However, in the condition of some misorientations,
14、 the GBPDs of random boundaries are quite different in the two samples. For grainboundaries of 111/3040 misorientation, more grain boundaries of twist type nearly on the exact111 plane are found in the specimen processed by DR and annealing for 120 min (DR120) comparedto that processed by MF and ann
15、ealing for 120 min (MF120). For the grain boundaries of 110/50misorientation, it was found that most of such boundaries in MF120 are tilt type and positioned on112, 113 and 115 planes, whereas those in DR120 are tilt or mixed type positioned on 001,111 and 012. It was suggested that there are distin
16、ct effects of preprocessing on the GBPDs ofannealed 304 steel.KEY WORDS 304 stainless steel, grain boundary character distribution, grain boundary planedistribution, grain boundary textureBCB1DHB5ALBCBKCRB2C4DDC3DBDEARDDC5, ASAXC0CNCNA7A4A2CLBPDBBWC3CNDJC4CSBKCRC1D1CTAXDBDJBMCJDED6BJAVC7. CGBS,BAAWD
17、AD1BCASD4DBBCB1BTC9(grain bound-ary engineering, GBE) D6BJCG, BJD8CXA7D6BQAQCJB7DHBT(coincidence sitelattice, CSL)AXC0D5CNDBDECSLBCB1, CSDECS 3, 9 CN 27 BCB1BQAQA0CDA9D2CNA7,BSBDA5AOCDBCB1AJBO, BQAQATBHDBBCADB5CJCNBHBBBRAZBYCJ13DD. CMC9BCB1DJACBAA2CDA5ATCLC5AWDAD1BCDBCGDEBTCSA7 fcc B5D5, BSA9CUADBDC
18、SBEA1ABDECPB5A1AKCPB5CNAVCPB5CGBMBPCQBHDBAUCG, D2AYAAAFAKCSBMBDAUD3DBCLAZAWDACICD4,5.AOATC7A7BOCFB4BVBCB1AXC0A9BVA1CT 5 BMBPDBCGDB 3 BM, DEATBDC7BVB4BVBCB1A9BVB1BG (grain bound-ary character distribution, GBCD) DBAVAQA2BDA7D3DBGBED6BJDBDEB7. CGBS, AQCKDBB4DF: C7AQBIB1 9 BCB1BQAQA4B5CJA9CN6,A0CDDJACC
19、WASABBCB1AIBZDGB4BSCFAMAADBBCADB5CJBYCJDD7.BWCDBQCDAABZBSC8DBBPB2BAATBCB1DBCNA7CSDEBTA5ATBCB1A1CIDBBCDC. ABCM, Randle8BHAACFCPBCB1DCBTC9 (grain boundary plane engineer-ing, GBPE) DBBAAA, DCBPC3BCB1DCB1BG (grain bound-ary plane distribution, GBPD) AMD4DBBAAA, C8BAAICGA9A5DBABBTCGC9CMBQALDBBCB1CIBADEA
20、7BEA5DBBCDCC5, A4BRCUB9C3CPB5BWADAWBCB1BWC3DBBNCICMALCNA7. BQC2D6BJDBDJBMA5DHCSBSCOD8D6CPB5DB GBPD. B9C5C2A4AICGDEATAJBHB2C8DBBVB6 X C8BVD9C8 (3DXRD)9,10 DCBOAPCAD7D9 (focused ion beam, FIB)11,12 B0BJA6D7AXCPEBSDBSD8CKCWAVDC (serial sectioning)DBBDC7DBBP, B7AMDBD8 GBPD CJBM, D2AOATBSCYDGABA3D4A1BSCY
21、B9AXA3CBB2CAAPAYALA8CADDBMBUCN, BQ2CIA6D7BAACARA6A5A4ATC7AGAL. BSAIBQCID0C5, Rohrer DD13CN SaylorDD14AACFCPDEATADCWD1B0CDCNA0D7ANBXC8D9C8 (elec-tron backscatter diffraction, EBSD) A6D7DBD1DJAVDCBIBPDBB1BKAQ (fiveparameter analysis, FPA). BQCIAVAQC7CTAICG EBSDA6D7BSBDDDAMBKA7DIDC (AVDC)C5BNBCCIDBBDC7
22、DBBP, BKC2A4BFCGCXCWB1BKBOCFBQAQALA7A7A8DBGBPDAXCE,CSDJCIAFD1A5CMB2AXATATC7DBCHAVAQ. CDARDBFPAAVAQC7CTALATBGBCADBDC7C3C0DCB4CPA0CIBDC7BVDBBCB1BMDABCB1AUCGCQBHDBALBCBKCR, B6B6BAA0CDB5D5BKCR1517CNA6CLBKCR18CGB7CMCPCYAL.ARC3ABDDDGBHCEALCDARDB FPA AVAQD6BJCPAGDFADBE19DAADDB GBPDA4A2CKCu20 CNAVCPB5213BCB
23、1DBGBPD,D8D6CPDJCDCQAQACC5DBAXCE.DEB8, RohrerAZC5CPASFPAAVAQDBBCADBDC7C3C0CPBYBTDH, DJCWDFAXBLCP FPA AVAQDBCTALASB3. CEAL FPAAVAQC2A4AVAXDFDBD8BKA7ALBCBKCRDB GBPD CJBM, C2A4AADEATBDC7BVB4BV GBCDDBCJALGBED6BJAACED6DJBMBQBHDBBTDC. ARBCDHBPAYARBTDH22BHBFALDEATBDC7BVB4BV GBCD DBAVAQ, AIA9CUADBDCSBEDB GB
24、E BFABB7CMCPCDBHD6BJ, CSDED6BJCBAZCLABBHBBAWDA 3n(n=1, 2, 3)BCB1DBCLC5AFAKCNDAAZC8CW. ABCM,AQAVDECEALFPAAVAQD6BJCWAZCLABBHBBAWDAA9CUADBDCSBEDB GBE BFAB, CJDHD6BJASBCB1C0C5DBDEARA9BVA4A2 3 BCB1CNDJACCWASABBCB1DB GBPD, D6BJBKCRCGC2A7CFBSDBBCB1C3C0 (grainboundary texture, GBT)13,23,24. BQAMABCBBJD8AIA9
25、CUADBDCSBE GBE DEARBFABDBBLCL, AQCWATA5A0CMC9BKCRGBCDCLC5CNDAAZDBDJACC8CW.BZCVD6AWDAAYDBAZCLAVCNC2A7AIAWDACXDB GBCD AQDJA5AIC0, ARD6BJAMCXBEALC7AFBD(multiple forging, MF)CND1C7BKCD(direct rolling,DG8AP ATC9ADDC : AJC5ADBBCLCZC5BICB 304BBCQBCBFB9AUD8CVD9BAAZDAAZBE 897A0DR) 2 CIAVCN, B1B6AIDDAMCHCMBHB
26、BAWDAAYDBCWAZCLCICD.1 B4BHAGCKDBALCRB5CUABB5 20 mm DB 304 A9CUADBDCSBEBIBKADAI,ASD4D1C5B1(CECNB1DB, %)B5: C 0.047, Cr 17.5,Ni 8.10, Si 0.49, Mn 0.89, P 0.028, S 0.0038, W 0.01,Cu 0.16, Al 0.007, Mo 0.10, N 0.0451, Fe AUCN. CYDDD0BPBA 1050 A7BOC2BPCICD 30 min, BHCXB1C5 2 DDB1B6B7CM MF CN DR CICD, D7D
27、7BKCDCNAFBDDBAZCLCNB5 0.2,BKCDCGC9BDB9AZBKCDAVC7, AMAFBDCIBND7CNA0CV (ZXYZXY A2) AMCYDDCZA8 90 CXB7CMD3BOAZCL, BSAR1A1CP. 2 CIAZCLA9B7CM 10 BMD7CN, DECHDBBRAGAZ BVB52. AZCLCXDBCPB5CYDDBA 900 A7BOB1B6B7CM 5, 30, 60 CN120 min DBAWDACICD, BPBPAWDACIADBDAJ, 2 DDCYDDB1B6DHDGB5 MF005, MF030, MF060, MF120
28、CN DR005,DR030, DR060, DR120.AWDACXDBCYDDB7CMB4DCCICDCNA0AYAHC6CX, BAB6AQEBSD B6AKDB Sirion200BIBYAOC8BYDDA0BG (SEM) C5B7CMBCCIBDC7DBBSA5. B5CPDBD8BQAQALA7CNDBAXCE, BAD7B81 AKC6BCCOA6AQFig.1 Schematic illustration of multiple forging (MF)BMCYDDDBAJDJAVDC (DR DDCYDDBSCYDCB5BKCDDC, MF DDCYDDBSCYDCB5DE
29、CHD7CNDBAFD3DC) AZC5ALB3 EBSDBYDD,BFAID7BMCYDDAQBYDDDBBCCIDBBDDEAT 20000 DCBCB1AFDBBDC6AT 50000. CEAL HKL BVDDAABUDB Sticher BTAKAMCYDDDBALBMBSCYB9AXAKAUATC8AZC5DBBPDBDJADD4B1BK,AHC6BDC7C5C4BRB2AR (orientation image microscopy,OIM) B1BKCNBCADBDC7C3C0B1BK. BMAL Brandon AGBP25BFA5 CSL BCB1. CEAL TSLOI
30、M 4 B1BKBTAKBAANB6 OIM ARCGCJC0CFA1AQBCB1DBDIBV, B8A7DHCFBCB1DIBVBABCADD1C4ADDBBDC7, CEALALAGC4BVASB8DBAFAQBFA5C6DBAYBABCB1 (AXANDCBCB1) DBDIBV. AICGD9AWDBBTAKAIA9A5BCB1C9CKB7CMC0CXDCCGCZ, BMAL Rohrer DDBWAODBBFC3C0CPBYCXDB FPA C8BFA5BCB1DB GBPD DCBIBPDBB1BGCJDB(g, n), ASCG g B5BWCS 2 BMBCCI i, j DB
31、BDC7BVBNBT, n B5BCB1DCBDC7, DJACAL (n) B4CPBNCIBDC7BVAFAKBODBBIBPDBB1BGCJDB. AOBIBPDBB1BGCJDBC2A4DBD8BABKA7BDC7BVDCBDBZCVBDC7BVAFAKBO, A1AQBCB1BABCADD1BNB0D7DCDCBCDCC5B1BGDBAZAB (AFC3BCB1DCB1BGAZAB, BOAJ). AIBZA4BCB1DJDGB1BGCIDBBCB1DCB1BGAZABDBAODB (multipleof random distribution, MRD) C8B4CPCKA8DBB
32、CB1DCB1BGAZAB. BA FPA B1BKCG, A0BPADCWD1B0CD, AL OIM ANB6AFAKBODBA4BCB1C0ABBFA5DBBCB1DCB1BGAZABB4BVBVB6AFAKBODBA4BCB1DCDHB5CRCNA0BPDBBCB1DCB1BGAZAB.2 B4BHAUAMBKB6B12.1 BDBABSBPBFMFCNDRCICDB8BA900A7BOAWDABDAJCIADCXCYDDDBOIM B1B6BSAR 2 CN 3A1CP. C2A4BXCF, AWDA 5 minB82 MFCXDCDABCC6C4C3BQB1AQ (OIM)Fig.
33、2 Orientation image microscopies (OIMs) of specimens MF005 (a), MF030 (b), MF060 (c) and MF120 (d)A0898 B3A0D3A0CYA0AJ DG48 BSCX MF CN DR CYDDDEARAZC5CPB8AXBC, MF CN DR CYDDDBBCCICACRDJD3AWDACIADDBD7C0AMC0CW, B4CPB8AXBCAWDABCCIDDC3AZD4DBDJACC8CW. AIAU 2DDCYDDDB OIMARD5C2A4B5BLDFBXCF, DR CYDDCG 110BC
34、DCANCMATBKDCDBBCCIATAL, A3ARCGDBD0BZBCCIBLAL, B4DFB7DDCYDDCQBAATAZDBBCADBDC7C3C0.AR 4 CN 5 B1B6CS MF CN DR CYDDBA Euler C4ADDBBDC7B1BGCJDB(orientationdistributionfunction, ODF)AVDCAR (2=0 CN 2=45). MF CYDDCGBCADBDC7C3C0AZABBA 3 DFAR, DEARBDCQBADFBRDBC3C0DCB6CQBABUC3C0;B83 DRCXDCDAOIMFig.3 OIMs of sp
35、ecimens DR005 (a), DR030 (b), DR060 (c) and DR120 (d)B84 MFCXDC2=0 CM2=45 DABCC6B0BFCIDA(ODF)Fig.4 2=0 and 2=45 sections of orientation distribution functions (ODFs) for specimens MF005 (a), MF030(b), MF060 (c) and MF120 (d)DG8AP ATC9ADDC : AJC5ADBBCLCZC5BICB 304BBCQBCBFB9AUD8CVD9BAAZDAAZBE 899A0B85
36、 DRCXDC2=0 CM2=45 DABCC6B0BFCIDA(ODF)Fig.5 2=0 and 2=45 sections of ODFs for specimens DR005 (a), DR030 (b), DR060 (c) and DR120 (d)(Typical texture components of 110100, 110111 and 110110 are denoted by arrows T1, T2 andT3 in Fig.5a, respectively)DR CYDDBFBDBH, BDD2CSBBBBAZC5B8AXBCDBCYDD(DR005), D5
37、CSA2BFAOCDCPBCCIC0CWDBCYDD, ALDBBCCIC6 111 ANCMATBKDCAQC7 (ND) B1BG, A3CLC5CPATAZDB111/NDDBDEC3C0, DC 110uvw C3C0, ASCG uvwBQAQALCJCN, B1BGBA 100(AR5CG T1CI) D6 110(AR5CGDB T3CI)C1AD 90 ASB3A6, D2BQALDBB1BGBA 111(AR5 CGDB T2 CI). DJD3AWDACIADD7C0, DR CYDDCGDBC3C0DDB1A2ASAZABAZD4BDBRCU, B4DFB7CGC9CSD
38、ICKDBBYBZBCCIC0CWCGC9.2.2 AYAWBSA5MF CN DR CYDDDBBCB1BDC7BVB1BGCJDB (misorien-tation distribution function, MDF)B1B6BSAR 6CN 7A1CP. DAADC8BX, CLDDCYDDCG 80% DBBCB1ASBDC7BVCSDEB1BGBA 4060 C1AD, ASCG 3 (60/111) BCB1AUCGDEBH,BA27%40%C1ADAZD4, DJAWDACIADD7C0BCB1AUCGBGAB; ASCNB5 9 BCB1, BCB1AUCGBA 0.5%4%
39、 AZD4, AZD4B8CRAW 3 BCB1AUCGBWAR, A3DJD3AWDACIADD7C0B7AUCGBOAO, AMASA2DE CSL BCB1BDBQAQBEAMB1BGA9CN. AUATBQ2 DDCYDDDB GBCD, ASBVAACSDEB4BSB5: MF CICDDBCYDDAWDACDAR 3 BCB1AUCGDBBGABCSD6D4DB, COAWDA 5 minD6 60 min, B7AUCGBA 27%30%C1AD, AWDA 2 h CXAPBGD6 40%,BWAGDF, 9 BCB1AUCGCOCWB4 4% AOD6 0.5%; AMDRC
40、ICDDBCYDDCG, 3BCB1AUCGBAAWDACDARD2DGBGAB, AWDA 30 min CXB7AUCGBGABCPB8 10%, C1CXBGDGD6D4, AMBQDDCYDDDB 9 BCB1AUCGAOB0CQDE, ANBVBDDB 1%. BQCSDJBMAXBZCJDEDBB9B6. DJACDF, 9 BCB1AIBZCSAO 2 BM 3BCB1BWAYAMCDC5DB, 2 DDCYDDBA 9 BCB1AUCGC5DBCJDEBVAAAGB7AWCYDDDB3BCB1A9CNAQC3.BQAMBABOBCB7CMBXD8.CTDEC6CFDBCS, B
41、9C5 DRDDCYDDB4BSCFCQAZDBC3C0, D2B8D6AQCFBSATBHAUCGDBCBASABBCB1, BQCSAOATASC3C0C9CKB5110uvw, ASCG uvw C6BSCFDBALCJCNBTA5CPBWAJDCBWB8DBBDC7BCCIBWCSDBA4CXAGC6, ABAMCBASABBCB1AUCGBGDFBRCEBH.2.3 3 AYAWAA GBPDAR 8 CN 9 CPCFCP MF CN DR CYDDBFAWDACX 3 BCB1DB GBPD, A3 3 BCB1DCBABNBCADD1BCDCC5DBB1BGA2DAAZB6C5
42、. AR 10 BOCFCP 001B2D2ANAIARCGDICKBCDCDJDHDBB7CAA4BUBPBZ. C2A4BXCF, 3 BCB1DCCSDEB1BGBAA4111DJDHB5CGCIDBC7BLB9AX, BDAJD0A4DBCYDD 3 BCB1DCBRCA111DJDHC7BLDBASABASB3BDAJ,DECWC2CT20,BSC7BLD6112BCDC. BSCEAA3BCB1AFD1DFB1B5CLCIC9CK,ASDJCSB7AT 111BCDCDBBYBLCK; ASANCSAJCA 111BCDC(AJCAASABC2CG 10)DBAXBYBLCK. C
43、2A4BLB5, 3BCB1DCDJDHAJCA 111C9ABB5CW, BFAXBYBLCKDBAUCGB5BH (AR 8 CN9CG3BCB1DCDJDHDBB1BGASB3ALCTBZB1BECPA7). AUAT2DDCYDDBDA5BXCF, AWDACDAR, ANASCSBAAWDA 60 min A4AY,MF CYDDCGAXBYBL 3 BCB1AUCGDEAU DR CYDDBHCD, BQAW 2 DDCPB5CYDDCG 9 BCB1AUCGBWCDCJDEBVAADBAWDACIADAGCSDEARBDCPDB, BAAXBYBL 3 BCB1AUCGBHDBC
44、PB5CYDDMF005 CN MF030 CG, 9 BCB1AUCGDGBH, B4B5 4%. AWDACXAR, 2DDCYDDCG 3 BCB1DC 111DJDHB1BGBWAIA0CG,AXBYBL 3 BCB1AICGB1DCB2A3 (finetuning)DAAZB5BYBLCK26,27,CMCI 9 BCB1AUCGDGDJC1BOAO. BQB4DF 9 BCB1DBBWCDCSDECSAXBYBL 3 BCB1BWD1DHALA1C9, AMBYBLBIB1AIBGAB 9 BCB1DBBWBTAXBZAQBU.2.4 BJDJA7ATABAYAWAA GBPD A
45、P GBTAOAR6CN7C2BZ,BDD2CSMFCICDCXBFBHBBAWDA, D5CS DR CICDCXBFBHBBAWDA, 304 BDCSBECYDDCGDB 3nBCA0900 B3A0D3A0CYA0AJ DG48 BSs48 s49s48 s50s48 s51s48 s52s48 s53s48 s54s48s48s53s49s48s49s53s50s48s50s53s51s48s51s53s52s48s32s32s82s101s108s46s32s102s114s101s110s113s117s101s110s99s121s44s32s37s77s105s115s111
46、s114s105s101s110s116s97s116s105s111s110s44s32s100s101s103s40s97s41s48 s49s48 s50s48 s51s48 s52s48 s53s48 s54s48s48s53s49s48s49s53s50s48s50s53s51s48s51s53s52s48s32s32s82s101s108s46s32s102s114s101s110s113s117s101s110s99s121s44s32s37s77s105s115s111s114s105s101s110s116s97s116s105s111s110s44s32s100s101s1
47、03s40s98s41s48 s49s48 s50s48 s51s48 s52s48 s53s48 s54s48s48s53s49s48s49s53s50s48s50s53s51s48s51s53s52s48s32s32s82s101s108s46s32s102s114s101s110s113s117s101s110s99s121s44s32s37s77s105s115s111s114s105s101s110s116s97s116s105s111s110s44s32s100s101s103s40s99s41s48 s49s48 s50s48 s51s48 s52s48 s53s48 s54s4
48、8s48s53s49s48s49s53s50s48s50s53s51s48s51s53s52s48s32s32s82s101s108s46s32s102s114s101s110s113s117s101s110s99s121s44s32s37s77s105s115s111s114s105s101s110s116s97s116s105s111s110s44s32s100s101s103s40s100s41B86 MFCXDCDABBB0BCC6BUB0BFCIDA (MDF)Fig.6 Misorientation distribution functions (MDFs) for specime
49、ns MF005 (a), MF030 (b), MF060 (c) and MF120(d)s48 s49s48 s50s48 s51s48 s52s48 s53s48 s54s48s48s53s49s48s49s53s50s48s50s53s51s48s51s53s52s48s32s32s82s101s108s46s32s102s114s101s110s113s117s101s110s99s121s44s32s37s77s105s115s111s114s105s101s110s116s97s116s105s111s110s44s32s100s101s103s40s97s41s48 s49s48 s50s48 s51s48 s52s48