1、小型垂直轴风力发电系统设计摘要 本文介绍了一种小型垂直轴风力发电系统的设计方案,本系统主要面向沿海高层建筑或边远地区用户。经过查阅大量文献资料结合必要的理论计算,系统采用四片 NACA0012型叶片构成 H 型达里厄风力机,利用永磁直驱同步发电机将机械能转化为电能,经过电力电子电路对蓄电池进行充电。文中对主要支撑件和传动件进行了必要的结构校核,对所用的两个角接触球轴承进行了使用寿命校核。最后以垂直轴风轮和永磁直驱发电机为主要对象,用solidworks 软件建立三维模型,设计风力发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。关键字 垂直轴 风力发电机 达里厄 NACA0012 翼型
2、Design of the Vertical Axis Wind TurbineAbstract This is a design of a kind of vertical axis wind turbine which was used in removed rural area or highrise in seaside city based on related theories. By consulting reference sources and necessary mathematical operation,four NACA0012 air-foil blades wer
3、e used as the compoments of the H-type Darrieus. The lead-acid bettery was charged by the electrical energy which was generated by a permanent magnet synchronous motor with the operation of power electronic circuits. In this article,some constructures such as the main suppoting parts and the angular
4、 contact ball bearings were vertified on the intensity and life. By using of the solidworks2006 software,every important part has a 3D model. We also design a control circuit and bettery breifly.Keywords Vertical axis Wind turbine Darrieus NACA0012 air-foil目录第一章 绪论 11.1 国内外风力发电的发展现状及其趋势 .11.2 小型垂直轴风
5、力发电机发展概况 .3第二章 风力发电基本原理 42.1 风特性 .42.1.1 风能量 42.1.2 湍流特性 52.2 风力发电系统结构框架 .5第三章 小型垂直轴风力发电的总体设计 63.1 风力机的种类及选择 .63.2 垂直轴风力机空气动力学 .83.2.1 风能利用率 93.2.2 Cp- 功率特性曲线 .103.2.3 贝茨极限 .103.2.4 叶尖速比 .113.2.5 风力机的功率及扭矩计算 .113.3 叶片选型 123.3.1 叶片实度 .133.3.2 叶片形状及材料 .14第四章 电气设备及传动设计 .164.1 基本原理 164.1.1 法拉第电磁感应原理 .16
6、4.1.2 相位角及功率因数 .164.2 转化装置 174.2.1 直驱式永磁同步发电机 .174.2.2 电气系统电路设计 .174.3 传动系统结构设计及计算 184.3.1 传动轴的设计 .184.3.2 轴承的计算及选型 .20第五章 刹车装置及其他部件设计 .255.1 刹车装置 255.1.1 刹车装置原理 .255.1.2 刹车结构受力计算 .275.2 塔架的设计 285.2.1 支撑件受力分析 .285.2.2 拉索的受力计算 .305.3 蓄电池和选型 315.3.1 蓄电池的种类及工作基本原理 .315.3.2 蓄电池选型 .325.4 箱体的设计 325.4.1 箱体
7、的外形设计 .325.4.2 箱体的防锈与密封 .33结论 34致谢语 35参考文献 36附录 37小型垂直轴风力发电系统设计引言当前火力发电仍然是主要的发电方式,其高污染高能耗正一步步吞噬着地球脆弱的生态环境,地球急需一种环保高效的可再生能源来替代火力发电。风力发电不像火力发电那样需要大量的煤炭、水力发电那样需要建造巨大的水库,也不像核电那样需要消耗铀,它不需要燃料就可以源源不断地产生能源,建好之后除了日常的维护费用外几乎不需要其他费用支持。风力发电的用法很多,既可以并网使用也可以离网使用,可以同太阳能一起使用,也可以单独构成大型风力发电厂。风力机的种类千奇百怪,设计思路五花八门,充分发挥了
8、人类丰富的想象力和创造力,按轴的方向分有水平轴风力机、垂直轴风力机,按驱动方式分有升力型和阻力型等等。虽然目前世界各地的大部分风场所用的风力机为水平轴的,但由于垂直轴风力机,尤其提到达里厄型风力机,有着优越的空气动力性能,提高了效率,并且很大程度降低了造价,所以近年来广泛受到各国研究人员的关注。垂直轴风力机的旋转半径可以小至一两米,也可以大到数十米,发电风速范围比较广。小型垂直轴风力发电系统设计1第一章 绪论1.1 国内外风力发电的发展现状及其趋势随着能源紧缺及化石燃料对环境污染日趋严重,开发新型能源成为各国经济发展的关键,目前可再生能源有太阳能、风能、地热能等。风能发电是目前为止技术最为成熟
9、,历史最为悠久的发电方式,是具有大规模发展潜力的可再生能源,有可能成为重要的替代能源。自13 世纪起,水平轴风车产业就成为了农村经济结构的主要部分,而利用风力发电的历史可以追溯到 19 世纪晚期,美国的 Brush 研制了第一台 12kW 的直流风力机。Golding(1955)、Shepherd 和 Divone(1994)记录了早期的风力机发展史。1931 年,苏联制造了一台 100KW、直径 30m 的 Balaclava(巴拉克拉法帽)风力机;19 世纪 50 年代早期,英国制造了一台100KW、直径 24m 的 Andrea Enfield(安德鲁-恩菲)风力机。1956 年,丹麦建
10、造了一台200KW、直径 24m 的 Gedser(盖瑟)风力机,1963 年法国电力工业试验了一台功率 1.1MW、直径 35m 的风力机。在德国,Hutter(胡特)于 19 世纪 50 年代和 60 年代建立了一些新型的风力机。由于石油价格突然上涨,美国开始建造一系列示范风力机组,如 1975 年的功率100KW、直径 38m 的 Mod-0 风力发电机组和 1987 年的功率 2.5MW、直径 97.5m 的 Mod-5B 风力发电机组。目前世界上最大的风力发电机是德国制造的 E-126,高达 120m,风轮直径126m,每个叶片长达 61.4m,每片重 18t,装机功率达到 5MW1
11、,如图 1-1 所示。 图 1-1 Enercon 的 E-126 型风力发电机小型垂直轴风力发电系统设计2我国风能资源丰富,根据第三次风能普查结果,我国技术可开发的陆地面积约为24104km2。考虑到风电场中风力发电机组的实际布置能力,按照 5MW/km2计算,陆上技术可开发量为 120104MW。目前我国风能资源开发利用的重点区域有内蒙古自治区、辽宁省、河北省、吉林省、甘肃省、新疆维吾尔自治区、江苏省等,其中内蒙古自治区技术可开发量约为 50104MW,居全国之首 2如图 1-2 所示。图 1-2 全年平均风能密度分布在国家可再生能源发展规划和风电装备国产化等相关政策的支持下,我过风电产业
12、得到了快速发展,2009 年中国(不含台湾省)新增风电装机 10129 台,容量 13803.2MW,年同比增长 124%;累计风电装机 21581 台,容量 25805.3MW,年同比增长 114%。台湾省当年新增风电装机 37 台,容量 77.9MW;累计装机 227 台,容量 436.05MW3,如图 1-3 所示。图 1-3 历年我国装机储量小型垂直轴风力发电系统设计31.2 小型垂直轴风力发电机发展概况垂直轴风力机(Vertical Axis Wind Turbine 或 VAWT)的风轮轴与风向垂直,风轮的转动与风向无关,但是由于其启动风速较高且功率不稳定,其发展并不像水平轴风力机
13、那么迅速。随着计算科学的飞速发展,垂直轴风力机的优异空气动力性能(尤其是达里厄风力机)渐渐为世人所认识,近年来广泛受到各国研究人员的关注。国外较大的风力发电公司有加拿大的 Cleanfiled Energy 公司,其主导产品是一种额定功率为 3.5kW 的升力型叶轮风力发电机,整套系统由玻璃钢纤维和钢材组成,约重 181.4kg,叶轮高 3m,轮辐直径 2.5m。2006年,中国垂直风力发电机实验基地在内蒙古化德县启动运行,目前 50kW 小样机组已投入运行开始发电,如图 1-4 所示。2007 年,西峡瑞发水电设备公司和哈尔滨发电设备研究中心联合开发设计的 1.5MW 垂直轴永磁风力发电机研
14、制成功,并在张家口风电场安装运行。图 1-4 德化县 50kW 垂直轴风力机小型垂直轴风力发电系统设计4第二章 风力发电基本原理2.1 风特性2.1.1 风能量空气的流动现象称为风,风是由于不同地方的空气受热不均匀,从一个地方向另一个地方运动的空气分子产生的,风的能量就是空气分子的动能,如图 2-1 所示。图 2-1 空气流的动能风功率计算公式为 /PWtmVSL联立以上各式得312PSv(2.1)从式(2.1)容易看出风速对风能的影响是最大的,因此在沿海地区设计风力机时必须要考虑强台风对设备的影响。小型垂直轴风力发电系统设计52.1.2 湍流特性湍流指的是短时间内的风速波动,随着海拔、气候、
15、地形等变化。影响湍流的因素很多,产生湍流的主要原因有:1.由地形差异引起的气流与地表的摩擦。2.由于空气密度差异和气温变化的热效应空气垂直运动。湍流往往是有这两种原因相互作用形成的。湍流无法用简单的数学公式完整的表达出来,其复杂程度超出了人类现有的认识能力。虽然它的活动遵循一定的定律,但是人类想要用这些定律来描述湍流过程是相当困难的,因此只能通过统计学来大致描述湍流。湍流风速变化基本上服从高斯函数,风速变动相对于风速均值服从正态分布,湍流强度 I 是用来描述湍流总体水平的,计算公式如下 4:(2.2)/IU式中 I 为湍流强度; 为脉动风速的均方根; 为脉动风速动能; 为 10min 平均风速
16、。2U湍流强度由地表的粗糙度和高度决定,通常是在很短的一段时间内计算得到的,如几分钟到一小时。2.2 风力发电系统结构框架小型垂直轴风力发电机不需要并网,只要选择合适的蓄电池就能够提供一般家庭的生活用电,本次设计的发电系统主要由以下几部分构成:叶轮、发电机、传动机构(包括刹车) 、塔架、整流、功率控制系统,如图 2-2 所示。图 2-2 系统结构图小型垂直轴风力发电系统设计6第三章 小型垂直轴风力发电的总体设计3.1 风力机的种类及选择风力机的分类方法很多,其中按风力机主轴布置方向可分为水平轴风力机和垂直轴风力机,水平轴风力机的旋转主轴与风向平行,如图 3-1 所示。水平轴风力机组有两个主要优
17、势:1.实度较低,能量成本低;2.叶轮扫掠面的平均高度可以更高,有利于增加发电量。图 3-1 水平轴风力发电机垂直轴风力机的旋转主轴与风向垂直,如图 3-2 所示,垂直轴风力机设计简单,风轮无需对风,其优点有:1.可以接受任何风向的风,无需对风;2.齿轮箱和发电机可以安装在地面,检修维护方便。小型垂直轴风力发电系统设计7图 3-2 垂直轴风力发电机按照桨叶受力方式分类可分为升力型风力机和阻力型风力机。升力型风力机利用叶片的升力带动旋转轴转动,从而转化风能为电能,这种风力机目前较为常见,大部分水平轴风力机都属于升力型风力机。目前大中型风电主要采用水平轴风力机,属升力型风力机,具有转速高、风的利用
18、率较高等优点,其叶尖速比通常在 4 以上,最大功率系数可达 50%,如图 3-3 所示。阻力型风力机利用叶片上受到的阻力来驱动发电机发电,大部分阻力型风力机为垂直轴,目前较少,如图 3-4 所示。图 3-3 升力型风力发电机图 3-4 阻力型风力发电机小型垂直轴风力发电系统设计8垂直轴升力型风力机既有垂直轴风力机结构简单、维修方便等优点,又和升力型风力机一样具有较高转速,风能利用率有所提高。由于运行过程中受力比水平轴好得多,疲劳寿命要更长。3.2 垂直轴风力机空气动力学如图 3-5 所示建立平面坐标系,假定风速矢量为 v,叶片端线速度矢量为 u,叶片所在位置夹角为 ,则叶片的平均线速度为 5(
19、3.1)|60DnUu在图 3-5 中,风速矢量 v=(0,-V) ,叶片速度矢量 u=(-Usin,Ucos) ,风对叶片的相对速度 w=v+u,坐标运算后得 w=(-Usin,-V+Ucos) 。图 3-5 垂直风力机动力原理相对风速的大小就是矢量 w 的模|w|,以 表示 w 的单位矢量, 表示 u 的单位矢量,WU则可以求出此时的攻角 ,攻角就是相对风速与叶片弦长所在直线的夹角,按照矢量计算可推得:(3.2)1cos(,)在风力的作用下,叶片在攻角 时受到的升力 和阻力 可以按以下公式计算:lFd(3.3)2llSwC(3.4)1dd小型垂直轴风力发电系统设计9将升力和阻力投影到风轮切
20、方向:(3.5)sinltlF(3.6)codt其中 Flt为 Fl在切向的分量;F dt为 Fd在切向的分量。叶片受力分解如图 3-6 所示 6。图 3-6 垂直风力机的叶素力学模型切向力的合力产生转矩使风轮转动,叶片在位置角为 时产生的转矩为(3.7)()ltdtMFR3.2.1 风能利用率风能利用系数 Cp 是表示风力机效率的重要参数,由于风通过风轮的风能不能完全转化为风轮机械能,其风能利用率 Cp 为 7(3.8)mw=p PC风 力 机 输 出 的 机 械 功 率输 入 风 轮 的 功 率其中 Pm 为风力机输出的机械功率;P w 为风力机输入的风能。目前大型水平轴风力发电机的风能利
21、用率绝大部分是由叶片设计方计算得到的,一般在40%以上。由于之前一般都是利用叶素理论来计算垂直轴风力机的风能利用率,得出的结果不如水平轴,但是根据国外最新的实验表明垂直轴的风能利用率不低于 40%8,再加上水平轴风力机受到风向变化的影响,而垂直轴风力机可以在任何风速角下工作,因此有理由相信垂直轴风力机的利用率能够超过水平轴。小型垂直轴风力发电系统设计103.2.2 Cp- 功率特性曲线风能利用系数 Cp 一般是变化的,它随着风速与风轮转速变化而变化,叶片尖端线速度与风速之比叫做叶尖速比 (将在第 3.2.4 节具体说明) ,为了得到最佳的风能利用率,一般根据 Cp- 曲线来选择合适的叶尖速比,
22、如图 3-7 所示。图 3-7 Cp- 曲线图从图 3-7 中看出,当叶尖速比达到 7.5 左右时风能利用系数最大,风能利用率最高,Cp值有一个最大值,实际风力机一般都达不到这么高的风能利用率,所以我们先初定叶尖速比在 =6,风能利用率 Cp=0.4 时对风力机进行设计,具体的 Cp- 图还需根据具体的风力机叶片试验及攻角调整来确定。3.2.3 贝茨极限风能利用系数缩短能达到的最大值就是贝茨极限,德国空气动力学家 Albert Betz 提出贝茨极限后,直到今天还没有人能设计出超过这个极限的风力机,该极限不是由于设计不足造成的,而是因为流管不得不在致动盘上游膨胀,使得自由流速比在圆盘处小,贝茨
23、极限由一下微分方程得出 9:(3.9)4(1)30dCpa式中 a 为气流诱导因子。解微分方程可知当 a=1/3 时,Cp 最大,求得最大 Cp=0.953。小型垂直轴风力发电系统设计113.2.4 叶尖速比风轮叶片尖端线速度与风速之比称为叶尖速比,阻力型风力机叶尖速比一般为 0.3 至0.6,升力型风力机叶尖速比一般为 3 至 8。在升力型风力机中,叶尖速比直接反映了相对风速与叶片运动方向的夹角,即直接关系到叶片的攻角,是分析风力机性能的重要参数。叶尖速比计算公式为(3.10)260Rnv3.2.5 风力机的功率及扭矩计算由福建省情资料库中的图像资料可以看出厦门地区地面平均风速在 4m/s6
24、m/s 左右,如图 3-8 所示。图 3-8 福建省风速分布从福建气象网站(http:/ 小时监测的结果可以看出,厦门地区一天内 4 级风(约 8m/s)出现的频率最高,如图 3-9 所示。图 3-9 厦门某日 24 小时风速监测图小型垂直轴风力发电系统设计12风力机的额定风速按照国家标准GBT 13981-2009 小型风力机设计通用要求:风轮扫掠面积小于等于 40m2的风力机额定风速 Vn 在 6m/s10m/s,我们将风力机的风速暂定为8m/s。风力机设计发电功率为 300W,现在我们来计算通过该风力机的总功率,按风力机效率 Cp=40%,则风力机的输入功率为(3.11)30754%wp
25、PWC根据公式(2.1)得扫风面积为(3.12)23320.1.58wSmv式中 P 为风力机实际获得总功率,W; 为空气密度,kg/m 3;取标准值 1.25 kg/m3;S 为风轮的扫风面积,m 2;v 为上游风速,m/s。以上结果表明:通过风功率为 750W 的风力机组,扫掠面积为 2.34 m2,在风速为 8m/s的情况下发电功率为 300W。风轮高度与直径的比值为风轮的高径比,应该在输出相同功率时叶片制造费用最低的条件下,选择高径比,研究表明,高径比为 1 附近时相同的材料扫风面积最大,其中 H 为风轮高度,D 为风轮直径。由 2.341HD得到 H=1.5m,D=1.6m,产生的扫
26、掠面积基本上能符合要求。风力机转矩 10:(3.13)2 23 380.50.514.20.4.6PvTCRNm3.3 叶片选型叶片是利用气流通过时产生的压力差使叶轮转动的部件,具有空气动力学特性,其设计质量对整个风力发电系统及其他零部件有这直接影响,因此叶片是风力机的重要部件。叶片的设计目标主要有:1. 良好的空气动力外形;小型垂直轴风力发电系统设计132. 可靠地结构强度;3. 合理的叶片刚度;4. 良好的结构动力学特性和启动稳定性;5. 耐腐蚀、方便维修;6. 满足以上目标前提下,尽可能减轻叶片重量,降低成本。风力机的翼型多种多样,各有各的优缺点,应用较多的有 NACA 翼型系列、SER
27、I 翼型系列、NREL 翼型系列、RIS 翼型系列和 FFA-W 翼型系列等,其中 NACA 翼型是美国国家宇航局(NASA)的前身国家航空咨询委员会(NACA)提出设计的翼型系列,具有低阻力系数的特点,适合低速运行 11。3.3.1 叶片实度风力机叶片的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度比(容积比) ,是风力机的一个参考数据。垂直轴风力机的叶片实度计算公式为:(3.12)CL/2R N/升力型垂直轴风力机叶轮,C 为叶片弦长,N 为叶片个数,R 为风轮半径,L 为叶片长度, 为实度比。合理选取实度比的原则是在保证风轮气动特性的条件下,力求使制造叶片的费用最低。为了最大限度提
28、高动效率,翼型特性应具有下列要求:1. 升力系数斜度大;2. 阻力系数小;3. 阻力系数与零升角对称。如图 3-10 所示三种翼型的阻力系数,可以看出,NACA0012 的阻力系数较小,适用于大雷诺数的情况,具有上述特性,故选用较低阻力系数 NACA0012 对称翼型。小型垂直轴风力发电系统设计14图 3-10 几种翼型的翼型特性由于 NACA0012 是对称翼型,在图 3-11 左侧数据表中仅列出了单边的数据,表中 c 是弦长(弦长为 1.00) ;x 是弦长坐标(单位是 x/c) ;y 是对应 x 位置的翼面与弦的距离(单位是 y/c) 。图 3-11 NACA0012 翼型参数实度比选择
29、在 0.50.6 范围内较好。为此可以得出风轮叶片的弦长:(3.13)20.86.24RCmN本次设计采用的叶片弦长 0.24m,数据只需将表中各数字适当缩放即可 5。3.3.2 叶片形状及材料叶片截面结构为主梁蒙皮式,表面材料为铝合金,主梁采用单向承载能力强的硬铝材料,O 型主梁结构制造简单,各向受力均衡。叶片空心处用聚氨酯泡沫材料填充,剖面形式如图3-12 所示。小型垂直轴风力发电系统设计15图 3-12 叶片剖面主梁可直接焊接与铝合金蒙皮上,待主梁与蒙皮连接完成后,在空腹结构内填入聚氨酯直接发泡填充成型。由此,风力机的基本参数可以确定,如表 3.1 所示。表 3.1 风力机参数额定风速
30、平均效率 叶尖速比 设计功率8m/s 40% 6 300W小型垂直轴风力发电系统设计16第四章 电气设备及传动设计4.1 基本原理4.1.1 法拉第电磁感应原理磁通量的变化将产生感应电动势,闭合电路的一部分导线切割磁感线将产生感应电流,这种现象叫做电磁感应,1820 年 H.C.奥斯特发现电流磁效应,之后许多科学家试图解释这一现象,1831 年 8 月,法拉第认为感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。法拉第电磁感应定律可用以下公式表示:(4.1)deNt其中:e 为感应电动势,N 为线圈匝数, 为磁通量变化量。导线切割磁感线产生的感应电动势
31、可用以下公式表示:(4.2)sin()i()mpUtIt其中 B 为磁感应强度,L 为导线长度,v 为导线切割速度。4.1.2 相位角及功率因数瞬时电压及瞬时电流由以下公式得到: sin()muUt(4.3)iI(4.4)其中 Um为电压最大值,I m为电流最大值, 是瞬时电压与瞬时电流的夹角。瞬时功率为: sin()i()mpUtIt(4.5)在一个周期内对瞬时功率积分获得平均功率:小型垂直轴风力发电系统设计17cos2pavgUIP(4.6)对于三相电流,每相电流等于 的线圈电流,实际产生的功率为:3cosavgI (4.7)式中 即为功率因数。cos4.2 转化装置4.2.1 直驱式永磁
32、同步发电机永磁同步发电机适合离网型风力发电系统采用,由于发电机转子直接由风轮驱动,因此不需要安装升速齿轮箱,这样避免了齿轮箱产生的损耗、噪声以及材料的磨损等问题。目前普遍使用的永磁同步发电机主要有 FD 系列和 YF 系列,按照功率和转速选择发电机,经过查阅中国电器工程大典第九卷-电机工程P617 表 5.5-2 ,现选择发电机型号为 FD-300,其基本参数如表 4.1 所示。表 4.1 发电机参数型号 额定功率/W发电机额定电压/V重量/kg启动力矩/Nm额定电流/A发电机额定转速FD-300 300 28 17 0.35 10.7 400r/min4.2.2 电气系统电路设计由于本人对电
33、力控制方面不是很了解,因此只能对现有前人的论文进行一些改动 12。功率控制部分设计限于知识水平本人无法所有完成,只能大概叙述基本工作原理,如图 4-1所示。小型垂直轴风力发电系统设计18图 4-1 系统电力控制图永磁直驱同步发电机转子输出三相交流电经过不控整流电路整流后对蓄电池进行充电,电子调压电路的功能除了对蓄电池充电的控制外,还负责多余电能的卸荷。12V 蓄电池接boost 电路进行升压,升压后电压为 24V,整个系统对外供电电压也为 24V。光电编码器的额定电压是 5V,因此在电路中加入 R1 与 R2 进行分压限流。4.3 传动系统结构设计及计算4.3.1 传动轴的设计主传动轴只承受扭
34、矩,不受弯矩,按空心主轴扭转强度估算主轴最小直径:(4.8)341PdAn其中 A 为系数,按机械设计手册单行本-轴承及其连接表 5-1-19选取;d 为轴端直径,mm;n 为轴的工作转速,r/min;P 为轴传递的功率,kW; 为空心轴的内径 d1与外径 d 的比值,=d 1/d。查阅机械设计手册单行本-轴承及其连接表 5-1-19得 45 钢的 A 值取 110,已知功率为 750W,主轴额定转速 n 为 400 转/min。代入式(4.8)后得到(4.9)3340.7511.24.6dm按照主轴扭转刚度计算直径:小型垂直轴风力发电系统设计19(4.10)4341PdBn其中 B 为系数,
35、按机械设计手册单行本-轴承及其连接表 5-1-20选取,查阅机械设计手册单行-本轴承及其连接表 5-1-20得一般传动时 B 值取 91.5,已知功率为 0.75kW,主轴额定转速 n 为 400 转/min,代入式(4.10)后得到(4.11)440.75191. 9.7.6dm如果截面上有键槽时,应将求得的轴径增大,其增大值见机械设计手册单行本轴-承及其连接表 5-1-22,增大值应选 7%,最后得出的最小外径 d=21.1mm。为了安全,我们选择的轴外径为 d=30mm,内径 d1=18mm,采用 45 钢调质处理,主轴如图 4-2 所示。图 4-2 主轴示意图校核主轴安全系数,主轴转矩
36、为(4.12)23230.50.1486.PvTCRNm只考虑扭拒作用时的安全系数为(4.13)1amSK其中 为对称循环应力下的材料扭转疲劳极限,Mpa,见机械设计手册单行本轴-承及其1连接表 5-1-1 , ; 为扭转时的有效应力集中系数,见 机械设计手册单行本15轴-承及其连接表 5-1-30表 5-1-32 , ; 为表面质量系数,一般用机械设计手1.8K册单行本轴-承及其连接表 5-1-36 ;轴表面强化处理后用机械设计手册单行本轴-承及其小型垂直轴风力发电系统设计20连接表 5-1-38 ;有腐蚀情况时用机械设计手册单行本轴-承及其连接表 5-1-35或机械设计手册单行本轴-承及其
37、连接表 5-1-37 , ; 为扭转时的尺寸影响系数,见0.4机械设计手册单行本轴-承及其连接表 5-1-34 , ; 、 为扭转应力的应力幅89am和平均应力,Mpa 见机械设计手册单行本轴-承及其连接表 5-1-25 ,; 为材料扭转的平均盈利折算系数,见 机械设计手册单行60.3.1249mapTZ本轴-承及其连接表 5-1-33 , 。0.2将各数据代入公式后得 1155.3.86.021049amSK根据调质 45 钢 ,要求查机械设计手册 (机工版)第 2 版第 19 篇第 5/0.5sb章得安全系数为 5.0,因此设计的主轴满足要求。4.3.2 轴承的计算及选型由于风力机不仅承受
38、风轮的扭矩,而且要承受气流方向的一定弯矩,角接触球轴承不仅能够承径向力,同时能够承受一定的径向载荷,因此在主轴上安装两个角接触球轴承。1角接触球轴承 1 的选用计算角接触球轴承 1 的安装位置如图 4-3 所示。图 4-3 轴承 1 的安装位置轴径 d=30mm,额定转矩 T=4.3Nm。由机械设计手册单行本-轴承表 6-2-82选择角接角接触球轴承小型垂直轴风力发电系统设计21触球轴承 36000 型新代号 7000C,之所以选用接触球轴承是考虑到主轴在转动时有可能产生径向载荷,轴承 1 参数如表 4.2 所示。表 4.2 轴承 1 参数轴向载荷: +m=159.8/47aFkgN叶 片 支
39、 撑 架 叶 片 支 架 主 轴( ) g径向载荷按照最不利状况计算,根据伯努利方程,气流作用在叶片上的压力为:(4.14)220.5.158=40PvPa作用在 4 个叶片上的总力为(4.15)4.37rFSN由机械设计手册单行本-轴承表 6-2-12推荐使用寿命为 100000 小时, 轴承当量动载荷的计算公式为(4.16)raPXYF式中 X、Y 分别为径向动载荷系数及轴向动载荷系数。可通过查机械设计手册表 283-2得:因为 /0.147/8.90.172aorFC所以应该选择 X=0.44,Y=1.47,代入式子得到 0.415.742.69raPXYN轴承基本额定动载荷按如下公式计
40、算: hmdnTfCP孔径 d 外径 D 轴承代号极限转速r/min(脂润滑)额定动负荷 rC额定静负荷 or重量30mm 55mm 7006C 9500 11.65kN 8.49kN 0.11kg小型垂直轴风力发电系统设计22式中: 为基本额定动载荷计算值,N; 为速度因数,按机械设计手册单行本-轴承表Cnf6-2-9选取 5.85; 为力矩载荷因数,力矩载荷较小时取 1.5,较大时取 2,这里选取mf2; 为冲击载荷因数,按机械设计手册单行本-轴承表 6-2-10选取 1.2; 为温度因df Tf数,按机械设计手册单行本-轴承表 6-2-11选取 1; 为寿命因数,按机械设计手册hf单行本
41、-轴承表 6-2-8选取 0.405; 为当量动载荷。P将各个数据代入式(4.13)得: 5.821.0691.54CNCr故选用此轴承能够满足额定载荷的要求。2角接触球轴承 2 的选用计算角接触球轴承 2 的安装位置如图 4-4 所示。图 4-4 轴承 2 安装位置按照机械设计手册单行本-轴承表 6-2-82选择轴承型号 36105(新型号 7005C) ,参数如表 4.3 所示。表 4.3 轴承 2 参数孔径 d 外径 D 轴承代号极限转速r/min(脂润滑)额定动负荷 rC额定静负荷 or重量25mm 47mm 7006C 12000 9.38kN 7.73kN 0.074kg轴承小型垂
42、直轴风力发电系统设计23按照轴承 1 校核公式(4.15)对轴承进行校核: 40.3751rFPSN+m=159.8/47akgN叶 片 支 撑 架 主 轴( )轴承当量动载荷按公式(4.16)得: raPXFY式中 X、Y 分别为径向动载荷系数及轴向动载荷系数。可通过查机械设计手册表 283-2得:因为 /0.147/6.530.22aorFC所以应该选择 X=0.44,Y=1.40,代入公式(4.16)得到 0.415.04721.raPXYN由机械设计基础(第五版)公式 16-3计算轴承寿命:(4.17)6()0ThdfCLnP式中: 为温度因数,按机械设计手册单行本-轴承表 6-2-1
43、1选取 1; 为冲击载荷因Tf df数,按机械设计手册单行本-轴承表 6-2-10选取 1.2;C 为额定动载荷,C=9.38kN;N 为主轴额定转速,n=400r/min; 为寿命指数,对于球轴承取 3。将各数据代入式子后得 66361010980()()2.7104.1.4ThdfCL hnP由机械设计手册单行本-轴承表 6-2-12推荐使用寿命为 100000 小时,所以可以满足使用要求。主轴与发电机之间用圆锥销套筒联轴器进行连接,如图 4-5 所示,联轴器具体参数见图纸。小型垂直轴风力发电系统设计24图 4-5 圆锥销套筒联轴器小型垂直轴风力发电系统设计25第五章 刹车装置及其他部件设计5.1 刹车装置5.1.1 刹车装置原理目前应用的制动器有外抱块式制动器(简称:块式制动器)、内张蹄式制动器(简称:蹄式制动器)、带式制动器、盘式制动器、载荷自制制动器等等,它们的工作原理都是利用摩擦力使致动盘停止,从而起到制动作用。制动器目前已经形成标准,是标准件。东莞市产华电机有限公司 FDB-1-100 型凸缘单板式电磁制动器是利用电磁力产生压力作用于制动盘上,在制动盘表面形成摩擦力,其基本结构如图 5-1 所示。图 5-1 制动器受力要求在十二级风速(约 30m/s)时能够有效制动,下面通过计算力矩来选择制动器已知 30/1.25860.4pvmskgRC