收藏 分享(赏)

SARS传播的数学模型05479.doc

上传人:精品资料 文档编号:11029632 上传时间:2020-02-01 格式:DOC 页数:19 大小:295.50KB
下载 相关 举报
SARS传播的数学模型05479.doc_第1页
第1页 / 共19页
SARS传播的数学模型05479.doc_第2页
第2页 / 共19页
SARS传播的数学模型05479.doc_第3页
第3页 / 共19页
SARS传播的数学模型05479.doc_第4页
第4页 / 共19页
SARS传播的数学模型05479.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、 指导教师:杜鸿飞赵 千 苏学渊 宋运吉SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性.针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病 SIR 模型的基础上,改进得到 SARS 传播模型.采用离散化的

2、方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计 2514 人,与实际情况比较吻合.应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间.在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难.本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失

3、,并预计北京海外旅游人数在 10 月以前能恢复正常.最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.1问题的重述SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1) (1) 对题目提供的一个早期模型,评价其合理性和实用性.(2) (2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响

4、.(3) (3) 根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响.(4) (4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性.2早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义 要求模型的建立有根据,预测结果切合实际. 实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际.所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息.2.1 早期模型简述早期模型是

5、一个 SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为 0N,平均每病人每天可传染 K 个人( K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的 K 值从开始到高峰期间保持不变,高峰期后 10 天的范围内 K 值逐步被调整到比较小的值,然后又保持不变.平均每个病人可以直接感染他人的时间为 L 天.整个模型的 L 一直被定为20.则在 L 天之内,病例数目的增长随时间 t(单位天)的关系是: tkNt1)(0考虑传染期限 L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办

6、法,把到达 L 天的病例从可以引发直接传染的基数中去掉.2.2 早期模型合理性评价根据早期模型对北京疫情的分析与预测,其先将北京的病例起点定在 3 月1 日,经过大约 59 天在 4 月 29 日左右达到高峰,然后通过拟合起点和 4 月 20日以后的数据定出高峰期以前的 K=0.13913.高峰期后的 K 值按香港情况变化,即 10 天范围内 K 值逐步被调整到 0.0273.L 恒为 20.由此画出北京 3 月 1 日至5 月 7 日疫情发展趋势拟合图像以及 5 月 7 日以后的疫情发展趋势预测图像,如图 1. 图 1 早期模型计算值与实际值对比图从图 1 可以看出,从 4 月 20 日至

7、5 月 7 日模型计算值与同期实际值的拟合程度比较好,但 5 月 7 日后模型计算值(即预测值)随着日期的增长逐渐偏离实际值.为了进一步验证上述分析,对模型计算值曲线和实际值进行残差分析,记iy表示第 i 天实际累计病例, iy表示第 i 天计算累计病例 .计算nyei ,21,* 其中,用 作为 的估计: 2)(1nyniii做出标准化残差 *ie的分布图,如图 2:图 2 早期模型的标准化残差分布图可以很明显地看出,在后期,残差图上出现明显的单减规律性,预测值高于实际值,说明预测值确实逐渐偏离实际值.通过以上分析得合理性评价:1 从预测准确度上有失合理性,虽然早期模型在拟合前期疫情时拟合程

8、度较好,但对后期情况的预测出现较大偏差.2 尽管预测准确程度不高,但是该模型确实预测出了整个疫情的发展趋势.从这一点上看,该模型还是切合实际的.3 该模型选用公布数据直接拟合,从而预测后期疫情发展趋势,这有悖于模型本身的含义.因为模型中的 )(tN实际代表的是 t时刻全社会的累计 SARS 患者,而公布数据仅为同期的累计确诊 SARS 患者,显然前者是大于或等于后者的.如果把公布数据当成实际数据处理,这必然导致模型解出现偏差,且解的实际意义不明确.对于这一点,我们将在建立自己的模型时重点关注!2.3 早期模型实用性评价模型的实用性关注的是模型能否真实全面的模拟真实情况,从而用模型指导实际.这里

9、主要抓住早期模型的参数设置情况进行实用性评价:1 该模型简单地以高峰期作为分析的临界点,这似乎对 SARS 发展的阶段没有了解透彻.同时,模型没有提出高峰期的确定方法,整个模型的建立必须有实际高峰期附近数据的支撑.如果仅有疫情爆发初期的数据,该模型就无法预测出疫情中后期发展的趋势,模型的实际应用范围受到限制.2 参数 K 代表某种社会环境下一个病人每天传染他人的人数,与全社会的警觉程度、政府和公众采取的各种措施有关.在初期,该模型将 K 固定在一个比较高的定值,在疫情高峰期过后,在 10 天内逐步调整 K 值到比较小,然后保持不变.但模型并没有给出 K 值的具体算法,只是不断地进行人工调整,具

10、有一定的主观性.同时沿用了香港疫情分析中的数据来预测北京的情况,可见该模型未对北京的实际情况进行充分的考虑.3 参数 L 代表平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染作用,可能的原因是被严格隔离、病愈不再传染和死去等等.该模型把 L 的值固定为 20,而实际的 L 应该随疫情发展趋势变化而变化,固定 L势必使模型只能片面模拟真实情况.综上,早期模型的一部分分析脱离了实际,而且在整个模型的建立和求解中人工干预过多,实际应用范围受到了限制,实用性不强.3 SARS 传播过程的分析由于早期模型缺少对 SARS 传播过程的系统分析,所以,要建立真正能预测病情发展的模型,应该首

11、先对整个传播过程有一个全面而详尽的分析.SARS 的传播大致经历了 4 个过程,相关描述可按照 Kink 于 1986 年提出的危机“四阶段说”.第一阶段是征兆期.在 SARS 传播初期,由于 SARS 感染者需要经历一定时间才表现出临床症状,所以在病毒实际上已经广泛传播的情况下,政府和公众并未引起注意.在这个时期,携带病毒的传播源没受到控制,平均传播期长,但整个社会的发病率还较低.第二阶段是迅速爆发期和蔓延期.当公众发现感染者不断增加时,恐慌情绪增加,政府随即采取多种措施,但由于对病毒传播的特点不清楚,并未收到预期效果.在这个时期,传播源的平均传播期依然较长,整个社会的发病率突然猛增.第三个

12、阶段是高峰期.当高强度的措施实施后,病毒扩散速度实际已经被控制,发病人数保持稳定,处在一个高平台阶段.在这个时期,有效隔离措施的产生,大大缩短了平均传染期,但由于病患基数较大,社会发病率依然很高.第四个阶段是衰退期和有效控制期.在高平台现象一段时间以后,控制措施的作用开始显现,患病人数开始下降,进入控制时期.在这个时期,平均感染期最短,社会发病率低.疫情进入了 4 个阶段的最后时期.有了以上的分析,建立的模型就应该体现 4 个不同时期下疫情的发展过程,并能够在此基础上准确预测疫情变化情况,提出切实可行的控制措施.考虑在经典传染病 SIR 模型基础上,通过机理分析,加入合理的实际因素,建立适合S

13、ARS 的分段微分方程模型,称为 SARS 传播的 SIR 改进模型.4 SARS 传播的 SIR 改进模型4.1 模型的假设11SARS 的持续期不太长,可以忽略在 SARS 持续期内的城市人口的自然出生率和自然死亡率.22被 SARS 感染后经治疗康复的人群在 SARS 流行期不会被再次感染.33病人被严格隔离、治愈或者死亡后,不再有感染作用.44不考虑人口的流动,仅仅在一个城市范围内研究 SARS 疫情的发展过程.4.2 模型的符号定义)(tS:易感类人群占城市人口总数的比例.I:传染类人群占城市人口总数的比例.R:排除类人群占城市人口总数的比例.)(t:SARS 患者的就诊率 患 者

14、总 数时 刻 全 社 会患 者 数时 刻 被 隔 离 的SARt:单位时间内一个传染者与他人的接触率.L:平均传染期.4.3 传播机理分析 针对早期模型的不足,需要在模型的合理性和实用性方面进行改进.考虑在经典传染病模型 SIR 的基础上,通过机理分析,用实际因素来描述 SARS 的传播过程.为了简化模型,这里不考虑人口的流动带来的影响,仅仅在一个封闭城市中研究 SARS 的传播机理.那么,整个社会人群可以分为 3 类:S 类:称为易感类,该类成员没有染上传染病,但缺乏免疫能力,可以被染上传染病.I 类:称为传染类,该类成员已经染上传染病,而且可以传染给 S 类成员.R 类:称为排除类或恢复类

15、,R 类成员或者是 I 类成员被严格隔离、治愈,或者死亡等.I 类成员转化为 R 类后,立刻失去传染能力.S(t)、I(t)、R(t)分别表示 t 时刻上述 3 类成员占城市人口总数的比例.对于传播过程有 3 条基本假设:1A:人口总数为常数 N,N 足够大,可以把变量 S(t)、I(t)、R(t)视为连续变量,还可进一步假定为连续可微变量. 2:人群中 3 类成员均匀分布,传播方式为接触性传播.单位时间内一个传染者与他人的接触率为 ,则一个传播者在单位时间内与 S 类成员的接触率为 )(tS,因此,单位时间内 I 类成员与 S 类成员的接触总数为 )(tIN,这就是单位时间内 I 类成员增加

16、的数量,称为发病率,它是 S(t)和 I(t)的双线性函数. 3A:传播者的被控制数正比于传染者的数量 )(tI,比例系数为 v, 称为被控制率,则平均传染期为 vL/1. /为一个传染者在其传播期内与其他成员的接触总数,称为接触数.那么 SARS 的传播流程如图 3:)()()( tNRtNItNS vNSNSI 排 除 类传 染 类易 感 类 控 制传 染 图 3 SARS 传播流程图在这个模型中,排除类 )(tR就是已确诊 SARS 患者累计数,而)(1tS是全社会累计 SARS 患者数,包括已确诊的和未被发现的两部分.4.4 模型的建立有了以上的机理分析,建立起针对 SARS 的改进

17、SIR 模型:0,1(2) 1 RISIvIdtISdt该模型中参数 和 v在疫情发展的各个阶段受实际因素影响,会有比较明显的变化,现分析如下:1 参数 表示单位时间内一个传染者与他人的接触率,其与全社会的警觉程度和政府、公众采取的各种措施有关,例如,佩戴口罩,减少停留在公共场所的时间,喷洒消毒药剂,提高隔离强度等都能有效地降低接触率 的值.一般认为, 的数值随着 SARS 发展的 4 个阶段不断变化.在 SARS 初期,由于潜伏期的存在和社会对 SARS 病毒传播的速度认识不足,政府和公众并未引起重视,故 维持在一个较高的数值;进入爆发期后,公众发现感染者不断增加,恐慌情绪增加,随即采取多种

18、措施,使 得到一定的控制,但效果不明显,此处假设 呈线性形式缓慢衰减;在高峰期,当高强度的控制措施实施后,病毒传播的有效接触率明显减少,可以认为 按天数呈指数形式衰减;此后进入衰减期, 就维持在一个较低值附近 .2 参数 v表示传播者的被控制率. vL/1称为平均传染期,表示一个传播者在被隔离或者死亡之前具有传播能力的平均时间.一般认为,SARS 患者经过传染期L 过后,将隔离治疗或者死亡,从 I 类成员变为 R 类,失去传播能力.L 与政府采取的措施密切相关,例如,尽量早地发现病患,对疑似病例提前进行隔离, “早发现,早隔离” ;提供更广范围的医疗手段,使更多的人接受有效的治疗等,都可以有效

19、地降低平均传染期 L 的长度.因此这里将 L 直接抽象为每一时期 SARS 患者的就诊率 )(t的函数.平均传染期 L 应随 )(t的变化而变化.但是在初期,由于政府对 SARS 的认识不足,并没有采取有效控制措施, L 的变化很小可以近似看作定值,这里我们取 SARS 病毒最长潜伏期(约 19 天)为这个定值;在爆发期,有效控制措施的逐步加强,使 SARS 患者的就诊率 )(t逐渐增加,而平均传染期 L 会逐渐减小并趋于一个定值,这里我们将 SARS 病毒平均潜伏期(约 7 天)定为 L 的最小值;在此后的高峰期以及衰减期,由于控制措施都保持在一定水平, L 的值会维持在 7 天左右.4.5

20、 针对北京疫情求解模型首先采用数学推导的方法,确定参数 和 v,并证明模型有唯一解.1 确定 和 v的关系令 ,方程组中 )1(2得:SdI1在病情刚开始时, 01SdI,由于 )(t是单调减少的,且 )(tI最终趋近于0,则当 1S时, )(t单调减少趋近于 0;当 1时, 先单调增加达到最大值,然后单调减少趋近于 0.容易知道,当 时,才满足 SARS 的传播规律,所以参数 和 v的取值必须满足这个条件.2 证明模型有唯一解在初值条件下解微分方程组: 100RSId得到关系式: )ln(1)(00t令 t,由 1 得 )l(00SR因为 0S,所以令 )ln(1)(00xxf则 lim0x

21、, 0ISRSf当 10S时,由于 )(f在 ),(0范围内有根,因而在 )1,(内有根.当 时,因为 xf1)(当 1x时, 0)(xf,所以 0)0ISf,因而 0)(xf在),0(内也有根.注意到当1x时, 0)(xf,故 0)(xf在 )1,(内有唯一根.所以, S在 ),0(内有唯一解.3 划分 SARS 传播的 4 个阶段由于 SARS 的传播经历了 4 个阶段,所以,要以具体的指标划分这 4 个阶段.因为在 4 个阶段中,日发病率 )()(tISNt是一个区分每个阶段特点的关键特征,所以以日发病率作为划分的指标.从第一个患者出现日开始:征兆期:日发病率在 10(人/天)以下.北京

22、疫情期的前 40 天.爆发期:从日发病率 10(人/天)到日发病率最大,即 0dt时.北京疫情期的第 40 天到第 74 天.高峰期:从日发病率最大到患者数量最大,即 tI时.北京疫情期的第 74 天到第 79 天.衰退期:患者数量最大点以后.北京疫情期第 79 天以后.4 确定 和 v根据北京最终 SARS 患者总数 2521 人以及北京人口总数(约 14000000 人) ,得198.0125S,所以 1v.因为平均传染期 vL,而 是 SARS 患者就诊率 )(t的函数,且 19,7L,所以,这里设计 L 函数为: )(17teL)(t由政府的控制措施决定,它的变化反映了政府控制措施的力

23、度.根据实际情况,推导出: 74 t 10)178.340(logt )(tt而接触率 与全社会的警觉程度和公众采取的各种措施有关,根据实际情况确定为: 79t 0672.43ln1t0 . 260t确定出所有的参数后,做出北京各时期累计全社会 SARS 患者数和各时期累计确诊 SARS 患者数预测图(图 4)以及北京市预测确诊 SARS 患者累计和实际确诊 SARS 患者累计对比图(图 5).同时得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计 2514 人.(计算程序见附件 1:SIR 模型程序)图 4 北京市预测非典病人累计总数和预测非典病人确诊病例累计对

24、比图图 5 北京市预测确诊病例累计和实际确诊病例累计对比图5改进 SIR 模型的分析与评价5.1 合理性评价从图 5 可以看出,本模型对数据的拟合程度非常高,完全克服了早期模型对后期数据预测不准的缺陷.做出标准化残差分析图,如图 6:图 6 改进 SIR 模型的标准化残差分布图(实际值预测值)可以看出,残差分布比较均匀,残差平方和为 2.0361,低于初期模型的 5.510.通过以上分析得出结论:改进 SIR 模型不仅在预测前期病情的时候非常准确,而且在预测后期病情的时候也没有出现明显偏差,预测值与实际值非常吻合.该模型能对整个病情的发展做出准确预测,这是该模型优于早期模型的方面之一.5.2

25、实用性评价对比早期模型实用性方面的不足,对改进 SIR 模型分析如下:1 早期模型在没有对 SARS 的传播过程进行系统分析的情况下就简单地以高峰期作为分析的临界点,同时,模型并没有提出高峰期的确定方法,模型的实际应用范围受到限制.而改进 SIR 模型在分析 SARS 传播过程的前提下,依据日发病率把整个传播过程细分为征兆期,爆发期,高峰期和衰退期 4 个阶段,并且考虑了每个阶段影响 SARS 传播的实际因素,能够更好地反映实际因素对SARS 传播的影响.2 早期模型预测的仅仅是已确诊累计 SARS 患者数,不包括未被发现的患者人数,这样的做法不能对防治工作提供真正有用的数据.而改进 SIR

26、模型不仅能准确预测已确诊累计病例,而且能够预测未被发现的患者人数,可以对防治工作提供更有用的数据.3 早期模型用参数 K 代表一个病人每天传染他人的人数.模型没有给出 K 值的具体算法,只是不断地进行人工调整,同时沿用了香港疫情分析中的数据来预测北京的情况,未对北京的实际情况进行充分的考虑.而改进 SIR 模型用参数表示单位时间内一个传染者与他人的接触率,并且考虑了 4 个阶段内 的变化情况,给出了 的函数表达式 .4 早期模型用参数 L 代表平均每个病人在被发现前后可以造成直接传染的期限,并且把 L 的值固定在 20 天,就造成了后期预测值明显偏离实际值的结果.而改进 SIR 模型中建立了

27、L 的分段函数表达式,根据各个阶段的具体影响因素控制 L 的大小.这样,在后期的预测上,也与实际值相当吻合.综上,改进 SIR 模型弥补了早期模型的不足,实际应用范围得到扩大,实用性强.5.3 建立可靠、优良模型的困难要建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,存在着许多的困难,还有许多努力的方向.1 缺乏详尽的,反映 SARS 疫情的实际统计数据,以及数据基础上的模型参数的具体取值.本文的模型计算与分析研究,主要依据关于北京市的 SARS 疫情通告的数据.这些数据不包括未被发现的患者人数的统计,数据的形式不能满足模型求解的要求.2 需要与流行病学家密切合作,更加合理地

28、设计模型结构与调整参数,以及估计并设定比较符合实际的参数取值,从而完善模型以及模拟结果.3 需要研究 SARS 在不同自然条件和社会条件下的差异性,总结 SARS 传播与控制的典型地域性模式.6分析具体措施对 SARS 传播的影响在 SARS 传播的实际过程中,有关部门采取了一些控制疫情的措施,在所有措施中,隔离开始的时间和隔离的强度是两个比较关键的因素,究竟这些因素对疫情传播能造成怎样的影响,现分析如下.改变隔离开始的时间通过对 L 调整实现,减小 L 的数值就提前了隔离时间;而改变隔离的强度通过对 调整实现,减小 的数值就提高了隔离的强度 .以北京的隔离强度为 100%,分别在 100%和

29、 80%强度下用改进 SIR 模型预测不同控制措施下累计病例总数(人)和疫情持续总时间(天).结果如表 1:提前 5 天延后 5 天提前 20 天隔离强度 100% 1458 人/90 天 4170 人/112 天 304 人/69 天隔离强度 80% 2057 人/167 天 5807 人/205 天 446 天/125 天表 1 不同控制措施下的结果分析表 1,得出结论:1 在相同隔离强度下,发现隔离开始的时间越早,累计病例总数就越小.2 在相同隔离开始时间下,隔离强度越大,疫情持续的时间就越短.3 综上,累计病例总数的大小主要由隔离开始时间的早晚决定;疫情持续时间的长短主要由隔离强度的大

30、小决定.所以,有关部门采取的措施确实对疫情的控制起到了很大的作用:“早发现,早隔离”能有效减少累计病例总数;“严格隔离”能有效缩短疫情持续时间.开始时间隔 离强度7SARS 对旅游业的影响SARS 的流行会对国民经济带来一定的影响.现在题目提供了北京市接待海外旅游人数的数据,要求根据这些数据,预测 SARS 对北京市的旅游业所产生的影响.7.1 预测正常情况下 2003 年的旅游人数旅游业随着社会经济的发展,会有一个逐年提高的趋势.如果没有 SARS 的流行,那么,海外旅游人数会以一定的规律保持增长的趋势.现在需要预测正常情况下 2003 年的旅游人数,采用季节性时间序列的半参数回归模型进行预

31、测.一般的半参数回归模型是指:(3) )(T gY 其中 1),(RTXP为随机向量或设计点列,T 的支撑集为有界闭集, 为1P的未知参数向量, )(g是定义于一有界闭集上的未知函数, E 为随机误差,2E0, (未知),且 与 X,相互独立.对季节性时间序列资料 ),21;ljnij ,其中 n为年份长度,l为季节长度.根据时间序列资料的加法原理有如下半参数回归模型 (4) )(jijgb其中 b 为模型参数, 主要反应时间序列在年度上的增长趋势. )(jg为未知函数, 主要反应时间序列在季节上的效应, 2,0ijijE且 ij相互独立.显然模型中不应包含常数项,因为常数项可包含在季节效应中

32、.在对旅游人数的估计时,因为采用了 19972002 年的数据进行参数估计,所以年份长度 6n,而季节上的效应实际上就是每个月的效应,季节长度12l.参数估计如下:1 把 b 看为已知时 )(jg的最小二乘估计为使 iijjgbX2)(最小的解,即 (5) 21)(njgj其中, ijjnX/,即为所有数据在季节点 j 上的均数.显然 jg也是)(g的一个临近估计.2 将(5)代入(4)后 b 的最小二乘估计为使ij jij nbX2)1(最小的解.作变换 21,niXjijij则 (6) 2iijijlb在小样本条件下,误差的总体方差 2估计为(7) )(1 22 ibXlnniljij将北

33、京海外旅游人数 19972002 年的数据代入式(5)、(6)、(7),得到:04.82b)62.1,5.1,74.20,8.1 ,08.1,3975.,73564()jg根据这些参数,预测正常情况下 2003 年的旅游人数(计算程序见附件 2:时间序列程序),结果如表 2(单位:万人):月份1 2 3 4 5 6 7 8 9 10 11 12人数15.4 17.1 25.3 30.0 30.8 29.2 28.9 33.9 33.6 34.4 31.0 25.3表 2 正常情况下 2003 旅游人数预测1997-2003 年旅游人数的变化如图 7 所示:图 7 1997-2003 年旅游人数

34、的变化7.2 季节性时间序列半参数模型的检验我们利用时间序列模型对 19972002 年的旅游人数进行拟合,再与实际值对照,画出残差图(图 8):图 8 19972002 年各月旅游人数估计值的标准化残差图中,标准化残差随机均匀分布在 x 轴周围,说明时间序列模型对 1997-2002年旅游人数的拟合程度比较高,能够对 2003 年各个月份的旅游人数做出比较准确的预测.7.3 预测 2003 年实际旅游人数实际旅游人数受到 SARS 的影响,从 3 月开始下降,在 5 月达到最低点后开始回升.做出实际旅游人数 iy占预测旅游人数 iy的百分比图,如图 9:图 9 实际旅游人数占预测旅游人数的百

35、分比图对 5 月以后旅游人数的回升用对数函数进行拟合:5 t,)18.1(5.0( iti yey根据这个函数预测出 2003 年实际旅游人数,如表 3(单位:万人):月份1 2 3 4 5 6 7 8 9 10 11 12人数15.417.123.511.61.782.618.816.231.134.431.025.3表 3 2003 年实际旅游人数预测旅游人数在 9 月 1 日时回复到正常水平的 92.6%,在 9 月 4 日左右恢复正常水平.2003 年的旅游总人数比预期减少 116.11 万人.若平均每位旅游者花销2000 元人民币,则累计经济损失达到 23.22 亿元人民币,比预计经

36、济收入减少了 34.67%.可以看出,SARS 对旅游业的影响还是比较大的,使整个旅游业收入减少了3 成左右.8模型的改进方向本文在传染病 SIR 模型的基础上,改进得到了 SARS 传播模型.模型能够比较准确地预测出累计病例数,还能隔离时间及隔离措施强度的效果进行分析,具有很好的合理性和实用性.但本模型还有一些可以完善的地方:1 本模型不考虑人口的流动,仅仅在一个城市范围内研究 SARS 的传播机理.可以增加参数 ij表示第 i 个城市向第 j 个城市的人口流动率,定量地研究相邻的 N 个城市之间人口的流动.这样,就需要有关方面提供城市间人口流动数据来确定参数 ij.2 对 SARS 最新研

37、究表明,该病毒对小孩的影响远远小于成年人.因此,可以将模型中 R(t)IS(t)、 改变为 t)R(a,tI,t)S(a,、 ,分别表示 t 时刻时易感类、传染类、恢复类按年龄分布的密度函数.这样,模型就能研究不同年龄层次的病情发展情况.9写给报刊的短文小小“抗非典英雄”2003 年初,春意昂然,万物复苏.没有人预料到,在一片安静祥和之中,一场灾难却悄悄地笼罩在人类社会的上空.不起眼的咳嗽、发烧,竟然导致了大范围的快速传播,甚至引起死亡,专家们似乎都对这个叫做“非典”的病魔束手无策.一时间,人心惶惶,谣言四起,大家都到了“谈非典色变”的地步.但是,我们岂会轻易服输?在这个关键时刻,科研工作者聚

38、到一起,运用科学这一有力的武器,向“非典”病魔做出有力的反击.在党中央和国务院的领导下,全国人民齐心协力,同舟共济.终于,在科学和团结面前,嚣张一时的“非典”病魔低下了头.春回大地,举国欢庆.亲爱的读者朋友,你是否知道,在这场“非典”攻坚战中,一个叫做“传染病数学模型”的工具,发挥了不可磨灭的作用吗?让我来介绍一下这位小小“抗非典英雄”吧.传染病数学模型,是科技工作者分析了这次非典爆发的部分数据后,建立的一种研究病情传播规律的工具.这些模型使我们能够对疫情的发展情况做出预测,并估计疫情发展所处的阶段.首先,传染病模型揭示了非典传播的规律,预测了病情发展的趋势.在那个谣言四起的时期,数学模型肯定

39、地告诉我们,非典是可以战胜的.这颗定心丸的出现,克服了人们的恐惧心理,维持了社会的安定.其次,通过对模型的分析,我们发现,在病情蔓延时期,对传播源及早的发现、严格隔离,对整个病情发展的控制起到了至关重要的作用.于是,我们提出了“早发现,早隔离” , “加大控制力度”这些措施.事实证明,这是行之有效的.数学模型对实际工作的指导意义也就显现出来.数学模型还能预测出“非典”对经济的影响,估计经济的恢复速度.看,名不见经传的传染病数学模型,竟然有如此重要的作用,让大家刮目相看了吧.相信随着研究的继续深入,这位小英雄还会发挥出它更大的本领.10参考书目1寿纪麟,数学建模方法与范例,http:/ 年 9

40、月 23 日2胡鞍钢,正确认识 SARS 危机,民主与科学,第 3 期:第 58 页,20033王文昌等,季节性时间序列资料预测的半参数回归模型,中国卫生统计,14卷第 6 期:第 46 页,1997附件附件 1:SIR 模型程序function f=sorS(1)=14000000;I(1)=1;R(1)=0;na=0.126;F=19;L=19;JU=19;M(1)=1;for i=2:74 %初期与爆发期if i=40 %爆发期 缓慢减少endS(i)=S(i-1)-na*S(i-1)*I(i-1)/14000000; %求解 S,I,Rif iL+2R(i)=S(i-L-2)-S(i-

41、L-1);elseR(i)=0;endif i=51F=F-0.5;L=fix(F);if F=LR(i)=S(i-L-3)-S(i-L-1);endendI(i)=I(i-1)+na*S(i-1)*I(i-1)/14000000-R(i);t=log(abs(14000001-S(i)/log(10);o(i)=abs(14000001-S(i);p=log(o(i)-o(i-1)/log(10);plot(i+JU-19,t,sr),hold on,plot(i+JU-19,t,sr),if p0.1plot(i+JU-19,p,or),plot(i+JU-19,p,or)endendh=

42、na;g(1)=17;n=1;for i=75:139 %高峰期与衰减期n=n+1;if i80na=h-log(i-73)/35; %在高峰期 急剧减少,此后为一定值endR(i)=S(i-L-2)-S(i-L-1); %求解 S,I,RS(i)=S(i-1)-na*S(i-1)*I(i-1)/14000000;I(i)=I(i-1)+na*S(i-1)*I(i-1)/14000000-R(i);t=log(abs(14000001-S(i)/log(10);o(i)=abs(14000001-S(i);p=log(o(i)-o(i-1)+1)/log(10);plot(i+JU-19,t,

43、sr),plot(i+JU-19,p,or)end附件 2:时间序列程序function sjxlX(1,:)=9.4 11.3 16.8 19.8 20.3 18.8 20.9 24.9 24.7 24.3 19.4 18.6;X(2,:)=9.6 11.7 15.8 19.9 19.5 17.8 17.8 23.3 21.4 24.5 20.1 15.9;X(3,:)=10.1 12.9 17.7 21.0 21.0 20.4 21.9 25.8 29.3 29.8 23.6 16.5;X(4,:)=11.4 26.0 19.6 25.9 27.6 24.3 23.0 27.8 27.3

44、28.5 32.8 18.5;X(5,:)=11.5 26.4 20.4 26.1 28.9 28.0 25.2 30.8 28.7 28.1 22.2 20.7;X(6,:)=13.7 29.7 23.1 28.9 29.0 27.4 26.0 32.2 31.4 32.6 29.2 22.9;for i=1:12y(i)=0;for j=1:6y(i)=y(i)+X(j,i);endy(i)=y(i)/6;endfor i=1:6 %计算 b、 )(jg和 for j=1:12Z(i,j)=X(i,j)-y(j);endendfor i=1:6p(i)=i-3.5; endb=0;q=0;for i=1:6for j=1:12b=b+p(i)*Z(i,j);endq=q+p(i)2;endb=b/q/12; for i=1:12g(i)=y(i)-b*7/2;endsi=0;for i=1:6for j=1:12si=(Z(i,j)-b*p(i)2;endendsi=sqrt(si/59);for i=1:12 %预测 2003 年无 SARS 情况下每个月的旅游人数X7(i)=7*b+g(i)+rand*si;end

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报