收藏 分享(赏)

《函数的单调性和奇偶性》经典例题详解.doc

上传人:精品资料 文档编号:10962273 上传时间:2020-01-28 格式:DOC 页数:9 大小:215.25KB
下载 相关 举报
《函数的单调性和奇偶性》经典例题详解.doc_第1页
第1页 / 共9页
《函数的单调性和奇偶性》经典例题详解.doc_第2页
第2页 / 共9页
《函数的单调性和奇偶性》经典例题详解.doc_第3页
第3页 / 共9页
《函数的单调性和奇偶性》经典例题详解.doc_第4页
第4页 / 共9页
《函数的单调性和奇偶性》经典例题详解.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、1类型二、求函数的单调区间2. 判断下列函数的单调区间; (1)y=x 2-3|x|+2; (2)解:(1)由图象对称性,画出草图f(x)在 上递减,在 上递减,在 上递增.(2)图象为f(x)在 上递增.举一反三:【变式 1】求下列函数的单调区间:(1)y=|x+1|; (2) (3) .解:(1) 画出函数图象,函数的减区间为 ,函数的增区间为(-1 ,+ ) ;(2)定义域为 , 其中 u=2x-1 为增函数,2在(- ,0)与(0,+ )为减函数,则 上为减函数;(3)定义域为(- ,0)(0,+) , 单调增区间为:(-,0),单调减区间为(0 ,+).类型三、单调性的应用(比较函数

2、值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数 f(x)在(0 ,+)上是减函数,比较 f(a2-a+1)与 的大小. 解: 又 f(x)在(0,+)上是减函数,则 .4. 求下列函数值域: (1) ; 1)x 5,10; 2)x(-3,-2)(-2,1);(2)y=x 2-2x+3; 1)x-1,1 ; 2)x-2,2.1)f(x)在5,10上单增, ;2) ;(2)画出草图1)yf(1),f(-1)即2,6 ; 2) .举一反三:【变式 1】已知函数 .(1)判断函数 f(x)的单调区间;3(2)当 x1,3时,求函数 f(x)的值域.解:(1) 上单调递增,在 上单调递增

3、;(2) 故函数 f(x)在1,3 上单调递增x=1 时 f(x)有最小值,f(1)=-2 x=3 时 f(x)有最大值x1,3时 f(x)的值域为 .5. 已知二次函数 f(x)=x2-(a-1)x+5 在区间 上是增函数,求:(1) 实数 a 的取值范围;(2)f(2)的取值范围. 解:(1)对称轴 是决定 f(x)单调性的关键,联系图象可知只需 ;(2)f(2)=2 2-2(a-1)+5=-2a+11 又a 2,-2a -4f(2)=-2a+11 -4+11=7 .举一反三:【变式 1】 (2011 北京理 13)已知函数 ,若关于 x 的方程 有两个不同的实根,则实数 k 的取值范围是

4、_.解: 单调递减且值域(0,1, 单调递增且值域为 ,由图象知,若 有两个不同的实根,则实数 k 的取值范围是(0,1).类型四、判断函数的奇偶性46. 判断下列函数的奇偶性: (1) (2) (3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5) (6 (7)解:(1)f(x) 的定义域为 ,不关于原点对称,因此 f(x)为非奇非偶函数;(2)x-10,f(x)定义域 不关于原点对称, f(x)为非奇非偶函数;(3)对任意 xR ,都有-xR,且 f(-x)=x2-4|x|+3=f(x),则 f(x)=x2-4|x|+3 为偶函数 ;(4)xR ,f(-x)=|

5、-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),f(x) 为奇函数;(5),f(x)为奇函数;(6)xR ,f(x)=-x|x|+x f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x) ,f(x) 为奇函数;(7) ,f(x)为奇函数.举一反三:【变式 1】判断下列函数的奇偶性:(1) ; (2)f(x)=|x+1|-|x-1|; (3)f(x)=x2+x+1;(4) .思路点拨:利用函数奇偶性的定义进行判断.解:(1) ;(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) f(x)为奇函数;(3)f(-x)=(-x) 2+(-

6、x)+1=x2-x+1f(-x)-f(x)且 f(-x)f(x) f(x)为非奇非偶函数;(4)任取 x0 则-x0 f(-x)=-(-x) 2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0 时,f(0)=-f(0) xR 时,f(-x)=-f(x) f(x)为奇函数.5类型五、函数奇偶性的应用(求值,求解析式,与单调性结合) 7已知 f(x)=x5+ax3-bx-8,且 f(-2)=10,求 f(2). 解:法一:f(-2)=(-2) 5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=108a-2b=-50 f(2)=2 5+23a-2

7、b-8=8a-2b+24=-50+24=-26法二:令 g(x)=f(x)+8 易证 g(x)为奇函数g(-2)=-g(2) f(-2)+8=-f(2)-8f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式 1】 (2011 湖南文 12)已知 为奇函数, ,则 为: 解: ,又 为奇函数,所以 8. f(x)是定义在 R 上的奇函数,且当 x0 时,-y=(-x) 2-(-x)即 y=-x2-x 又 f(0)=0, ,如图9设定义在-3,3 上的偶函数 f(x)在0,3 上是单调递增,当 f(a-1)b0,给出下列不等式,其中成立的是_.6f(b)-f(-a)g(a)-g(

8、-b); f(b)-f(-a)g(b)-g(-a); f(a)-f(-b)1 时,如图 3,g(a)=f(1)=a 2-2a,如图13. 已知函数 f(x)在定义域(0,+ )上为增函数,f(2)=1,且定义域上任意 x、y 都满足 f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)3. 解:令 x=2,y=2 ,f(22)=f(2)+f(2)=2 f(4)=2再令 x=4,y=2 ,f(4 2)=f(4)+f(2)=2+1=3 f(8)=3f(x)+f(x-2) 3 可转化为: fx(x-2)f(8).14. 判断函数 上的单调性,并证明. 证明:任取 00(1)当 时00 即 f(x1)f(x2)上是减函数.(2)当 x1,x 2(1, +)时,上是增函数.15. 设 a 为实数,函数 f(x)=x2+|x-a|+1,xR,试讨论 f(x)的奇偶性,并求 f(x)的最小值. 解:当 a=0 时,f(x)=x 2+|x|+1,此时函数为偶函数;当 a0 时,f(x)=x 2+|x-a|+1,为非奇非偶函数.(1)当 xa 时,1且2 上单调递增,上的最小值为 f(a)=a2+1.(2)当 xa 时,1 上单调递减,上的最小值为 f(a)=a2+12 上的最小值为综上:1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报