1、1高数常用极限公式大全(共 1 篇)以下是网友分享的关于高数常用极限公式大全的资料 1篇,希望对您有所帮助,就爱阅读感谢您的支持。篇 1高等数学公式导数公式:(tgx ) =sec x (ctgx ) =-csc x (secx ) =sec x tgx (cscx ) =-csc x ctgx (a x ) =a x ln a1(loga x ) =x ln a基本积分表:三角函数的有理式积分:222(arcsinx ) =1-x 21(arccosx ) =-x 21(arctgx ) =1+x 21(arcctgx ) =-1+x 2tgxdx =-ln cos x +C ctgxdx
2、=ln sin x +Csec xdx =ln sec x +tgx +C csc xdx =ln csc x -ctgx +Cdx 1x=arctg +C a 2+x 2a a dx 1x -a=ln x 2-a 22a x +a +C dx 1a +x=ln a 2-x 22a a -x +C dx x=arcsin +C a 2-x 2a2n3dx 2cos 2x = sec xdx =tgx +C dx 2sin 2x =csc xdx =-ctgx +Csec x tgx dx =sec x +C csc x ctgxdx =-csc x +Ca xa dx =ln a +Cxshx
3、dx =chx +C chxdx =shx +C dx x 2a 2=ln(x +x 2a 2) +C2I n =sin xdx =cos n xdx =n -1I n -2nx 2a 22x +a dx =x +a +ln(x +x 2+a 2) +C22x 2a 2222x -a dx =x -a -ln x +x 2-a 2+C22x a 2x 2222a -x dx =a -x +arcsin +C422a222u 1-u 2x 2dusin x =, cos x =, u =tg , dx =21+u 21+u 21+u 21 / 12一些初等函数: 两个重要极限:e x -e -x
4、双曲正弦:shx =2e x +e -x双曲余弦:chx =2shx e x -e -x双曲正切:thx =chx e x +e -x arshx =ln(x +x 2+1)archx =ln(x +x 2-1)11+xarthx =ln21-x三角函数公式: 诱导公式:5sin x lim =1x 0 x1lim (1+) x =e =2. *. x x和差角公式: 和差化积公式:sin() =sin cos cos sin cos() =cos cos sin sin tg () =tg tg 1 tg tg ctg ctg 1ctg () =ctg ctg sin +sin =2sin+
5、22+-sin -sin =2cos sin22+-cos +cos =2cos cos22+-cos -cos =2sin sin22cos-62 / 12倍角公式:sin 2=2sin cos cos 2=2cos 2-1=1-2sin 2=cos 2-sin 2ctg 2-1ctg 2=2ctg 2tg tg 2=1-tg 2半角公式:sin 3=3sin -4sin 3cos 3=4cos 3-3cos 3tg -tg 3tg 3=1-3tg 2sin tg2=-cos +cos cos =2221-cos 1-cos sin +cos 1+cos sin = ctg =1+cos s
6、in 1+cos 21-cos sin 1-cos 7a b c=2R 余弦定理:c 2=a 2+b 2-2ab cos C sin A sin B sin C2正弦定理:反三角函数性质:arcsin x =2-arccos x arctgx =2-arcctgx高阶导数公式莱布尼兹(Leibniz )公式:(uv )(n )k (n -k ) (k )=C n u v k =0n=u (n ) v +nu (n -1) v +8n (n -1) (n -2) n (n -1) (n -k +1) (n -k ) (k )u v + +u v + +uv (n )2! k !中值定理与导数应用
7、:拉格朗日中值定理:f (b ) -f (a ) =f ()(b -a ) f (b ) -f (a ) f ()=F (b ) -F (a ) F ()曲率:当 F (x ) =x 时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds =+y 2dx , 其中 y =tg 平均曲率:K =:从 M 点到 M 点,切线斜率的倾角变化量;s :M M 弧长。sy d M 点的曲率:K =lim =.s 0s ds (1+y 2) 31. a3 / 12直线:K =0; 半径为 a 的圆:K =定积分的近似计算:9b矩形法:f (x ) a bb -a(y 0+y 1+ +y n -1) nb
8、-a 1(y 0+y n ) +y 1+ +y n -1n 2b -a(y 0+y n ) +2(y 2+y 4+ +y n -2) +4(y 1+y 3+ +y n -1)3n梯形法:f (x ) ab抛物线法:f (x ) a定积分应用相关公式:功:W =F s水压力:F =p Am m引力:F =k 122, k 为引力系数。rb 110函数的平均值:y =f (x ) dx b -a a 1f 2(t ) dt b -a a空间解析几何和向量代数:b空间 2 点的距离:d =M 1M 2=(x 2-x 1) 2+(y 2-y 1) 2+(z 2-z 1) 2 向量在轴上的投影:Pr j u =cos , 是 u 轴的夹角。Pr j u (a 1+a 2) =Pr j a 1+Pr j a 2a b =a b cos =a x b x +a y b y +a z b z , 是一个数量, 两向量之间的夹角:cos =ic =a b =a xb xj a y b ya x b x +a y b y +a z b za x +a y +a z b x +b y +b z222222k