1、文科数学 第 页(共 4 页)12017 年普通高等学校招生全国统一考试(I 卷)文科数学1、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. 已知集合 ,则023|2|xBxA,A. B. |B BAC. D. 23|xA R2. 为评估一种农作物的种植效果,选了 n 块地作试验田。这 n 块地的亩产量(单位:kg)分别为x1,x 2,x n, 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A. x1,x 2,x n 的平均数 B. x1,x 2,x n 的标准差C. x1,x 2,x n 的最大值 D. x1,x
2、2,x n 的中位数3. 下列各式的运算结果为纯虚数的是A. i(1 + i)2 B. i2(1 - i) C. (1 + i)2 D. i(1 + i)4. 如图,正方形 ABCD 内的图形来自中国古代的太极图。正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。在正方形内随机取一点,则此点取自黑色部分的概率是A. B. 41 8C. D. 2 45. 已知 F 是双曲线 C: 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是(1,3) ,则APF132yx的面积为A. B. C. D. 31232236. 如图,在下列四个正方体中,A 、B 为正方体的两个
3、顶点, M、N 、Q 为所在棱的中点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的是2017.6文科数学 第 页(共 4 页)2A. B. C. D. 7. 设 x、y 满足约束条件 则 z = x + y 的最大值为,01,3yxA. 0 B. 1 C. 2 D. 38. 函数 的部分图象大致为xycos12inA. B. C. D. 9. 已知函数 f (x) = ln x + ln(2 - x),则A. f (x)在(0,2)单调递增 B. f(x)在(0,2) 单调递减C. y = f (x)的图象关于直线 x = 1 对称 D. y = f (x)的图象关于点(1,0)对
4、称10. 右面程序框图是为了求出满足 3n - 2n 1000 的最小偶数 n,那么在和 两个空白框中,文科数学 第 页(共 4 页)3可以分别填入A. A 1000 和 n = n + 1B. A 1000 和 n = n + 2C. A 1000 和 n = n + 1D. A 1000 和 n = n + 211. ABC 的内角 A、B 、C 的对边分别为 a、b、c,已知 sinB + sinA(sinC - cosC) = 0,a = 2,c = ,则 C =A. B. C. D. 1264312. 设 A、B 是椭圆 C: 长轴的两个端点,若 C 上存在点 M 满足AMB = 1
5、20,则 m 的取值范围是132myxA. B. C. D. ),910(),93,0(),410(),43,0(2、填空题:本题共 4 小题,每小题 5 分,共 20 分。13. 已知向量 a = (-1,2),b = (m,1)。若向量 a + b 与 a 垂直,则 m =_。14. 曲线 在点(1,2)处的切线方程为_。xy1215. 已知 ,则 _。tan),0(, )4cos(16. 已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,SC 是球 O 的直径,若平面 SCA平面 SCB,SA = AC,SB = BC,三棱锥 S-ABC 的体积为 9,则球 O 的表面积为_。3、
6、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17. (12 分)记 Sn 为等比数列a n的前 n 项和。已知 S2 = 2,S 3 = -6。(1)求a n的通项公式;(2)求 Sn,并判断 Sn+1,S n,S n+2 是否成等差数列。文科数学 第 页(共 4 页)418. (12 分)如图,在四棱锥 P-ABCD 中,AB/CD,且BAP = CDP = 90。(1)证明:平面 PAB平面 PAD;(2)若 PA = PD = AB = DC,AP
7、D = 90,且四棱锥 P-ABCD 的体积为 ,38求该四棱锥的侧面积。19. (12 分)为了监控某种零件的一条生产线的生产过程,检验员每隔 30min 从该生产线上随机抽取一个零件,并测量其尺 寸(单位:cm),下面是检验员在一天内依次抽取的 16 个零件的尺寸:抽取次序 9 10 11 12 13 14 15 16零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得 , ,97.16ix 21.0)6(1)(1622iii xxs, ,其中 xi 为抽取的第 i 个零件的尺寸,i = 1,2,16。43.8)5.(162i 1678
8、.)5.(iix(1)求(x i,i)(i = 1,2,16)的相关系数 r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若| r | 0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)。(2)一天内抽检零件中,如果出现了尺寸在 之外的零件,就认为这条生产线在这一天的生产)3,(sx过程可能出现了异常情况,需对当天的生产过程进行检查。(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在 之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值)3,(sx与标准差。(精确到 0.01)抽取次序 1 2 3 4
9、5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04文科数学 第 页(共 4 页)5附:样本(x i,yi)(i = 1,2,n)的相关系数 , 。niiniiiii yxr1212)()( 0.9.820. (12 分)设 A、B 为曲线 C: 上两点,A 与 B 的横坐标之和为 4。42xy(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点,C 在 M 处的切线与直线 AB 平行,且 AMBM,求直线 AB 的方程。21. (12 分)已知函数 。xaxfx2)e()(1)讨论 f (x)的单调性;(2)若 f (x) 0,
10、求 a 的取值范围。文科数学 第 页(共 4 页)6(2)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。22. 选修 44:坐标系与参数方程 (10 分)在直角坐标系 xOy 中,曲线 C 的参数方程为 ,直线 l 的参数方程为)(,sinco3为 参 数yx。)(,14为 参 数tyax(1)若 a = -1,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 距离的最大值为 ,求 a。1723. 选修 45:不等式选讲(10 分)已知函数 f (x) = -x2 + ax + 4, g (x) = |x + 1| + |x - 1|。(1)当 a = 1 时,求不等式 f (x) g (x)的解集;(2)若不等式 f (x) g (x)的解集包含-1,1 ,求 a 的取值范围。