1、人教版八年级数学知识点总结第十一章 三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三
2、角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上 三角形是封闭图形(3)首尾顺次相接三角形用符号“ ”表示,顶点是 A、B、C 的三角形 记作“ ABC”,读作“三角形 ABC”。5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形 底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:人教版八年级数学知识点总结直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起
3、,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围。证明 线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于 180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形
4、的面积= 底 高21多边形知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。凸多边形分类 1: 人教版八年级数学知识点总结凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。多边形 非正多边形:1、n 边形的内角和等于 180(n-2)。 多 边 形 的 定 理 2、任意凸形多边形的外角和等于 360。3、n 边形的对角线条数等于 1/2n(n-3)第十二章 全等三角形一、全等三角形能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形
5、的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.人教版八年级数学知识点总结2、(判定)角的内部
6、到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边 ”与“对边”, “对应角”与 “对角” 的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角 对应相等 ”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边” 、“对顶角”1、全等三角形的概念能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相
7、邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。2、全等三角形的表示和性质全等用符号“” 表示,读作“ 全等于”。如ABCDEF ,读作“三角形 ABC 全等于三角形 DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS” )(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边” 或“SSS” )。直角三角形全等的判定:对于
8、特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边” 或“HL”)人教版八年级数学知识点总结4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折 180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。第十二章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对
9、称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 3、 轴 对 称 图 形 和 轴 对 称 的 区 别 与 联 系轴 对 称 图 形 轴 对 称区 别联 系图 形(1)轴 对 称 图 形 是 指 ( )具 有 特 殊 形 状 的 图 形 ,只 对 ( )图 形 而 言 ;(2)对 称 轴 ( )只 有 一 条(1)轴 对 称 是 指 ( )图 形的 位 置 关 系 ,必 须 涉
10、及( )图 形 ;(2)只 有 ( )对 称 轴 .如 果 把 轴 对 称 图 形 沿 对 称 轴分 成 两 部 分 ,那 么 这 两 个 图 形就 关 于 这 条 直 线 成 轴 对 称 .如 果 把 两 个 成 轴 对 称 的 图 形拼 在 一 起 看 成 一 个 整 体 ,那么 它 就 是 一 个 轴 对 称 图 形 .B CAC BAAB C一 个 一 个不 一 定 两 个 两 个一 条知 识 回 顾 :4.轴对称的性质关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分
11、线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线人教版八年级数学知识点总结1. 经过线段中点并且垂直于 这条线 段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 在平面直角坐标系中,关于 x 轴对称的点横坐标相等,纵坐标互为相反数.关于 y 轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于 x 轴对称的点的坐 标为_.点(x, y)关于 y 轴对称的点的坐 标为_.2.三角形三条边的垂直平分线相交
12、于一点,这个点到三角形三个顶点的距离相等四、 (等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。 (等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 (三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。 (等角对等边)五、 (等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于 600 。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是 600 的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于 300,那么它所对的直角边等于斜边的一半。1、等腰
13、三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底 边上的中线、底边上的高重合。人教版八年级数学知识点总结推论 2:等边三角形的各个角都相等,并且每个角都等于 60。(2)等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于 45等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。等腰三角形的三边关系:设腰长为 a,底边长为 b,则 10 的数则可以表示为 ( ,即 a 的整数部分只有一位,nn10a10a为整数)的形式,n 的确定 n=比
14、整数部分的数位的个数少 1。如 120 000 000= 810.2知识点七分式方程的解的步骤去分母,把方程两边同乘以各分母的最简公分母。 (产生增根的过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为 0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为 0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为 0。知识点八列分式方程基本步骤 审仔细审题,找出等量关系。 设合理设未知数。 列根据等量关系列出方程(组)。 解解出方程(组)。注意检验 答答题。7 个 09 个数字人教版八年级数学知识点总结第十六章
15、 二次根式1.二次根式:式子 ( 0)叫做二次根式。a2.最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质:(1)( )2= ( 0); (2)a a5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减
16、法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式 ab= (a0,b0); ba(b0,a0)4有理数的加法交换律、结合律,乘法交换律及结合律, 乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算( 0)( 0a)0 ( =0) ;人教版八年级数学知识点总结第十七章 勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b 2=c2。2.勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。 ,那么这个
17、三角形是直角三角形。3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 (例:勾股定理与勾股定理逆定理) 4.直角三角形的性质 (1)、直角三角形的两个锐角互余。可表示如下:C=90 A+B=90(2)、在直角三角形中,30角所对的直角边等于斜边的一半。A=30可表示如下: BC= AB21C=90(3)、直角三角形斜边上的中线等于斜边的一半ACB=90 可表示如下: CD= AB=BD=AD21D 为 AB 的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它
18、们在斜边上的摄影和斜边的比例中项ACB=90 BDAC2BADC2CDAB 6、常用关系式由三角形面积公式可得:AB CD=AC BC7、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系 ,那么这个22cba三角形是直角三角形。8、命题、定理、 证明 1、命题的概念人教版八年级数学知识点总结判断一件事情的语句,叫做命题。理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。2、命题的分类(按正确、错误与否分)真命
19、题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理用推理的方法判断为正确的命题叫做定理。5、证明判断一个命题的正确性的推理过程叫做证明。6、证明的一般步骤(1)根据题意,画出图形。(2)根据题设、结论、 结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2
20、)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。10 数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾
21、乘首减尾,莫与完全公式相混淆。人教版八年级数学知识点总结完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。第十八章 四边形1四边形的内角和与外角和定理:(1)四边形的内角和等于 360;(2)四边形的外角和等于 360.2多边形的内角和与外角和定理:(1)n 边形的内角和等于(n-2)180 ;(2)任意多边形的外角和等于 360.3平行四边形的性质:因为 ABCD 是平行四边形 .54321) 邻 角 互 补( ) 对 角 线 互 相 平 分 ;( ) 两 组 对 角 分 别 相 等 ;( ) 两 组 对 边 分 别 相 等 ;(
22、) 两 组 对 边 分 别 平 行 ;(4.平行四边形的判定:.是 平 行 四 边 形) 对 角 线 互 相 平 分( ) 一 组 对 边 平 行 且 相 等( ) 两 组 对 角 分 别 相 等() 两 组 对 边 分 别 相 等( ) 两 组 对 边 分 别 平 行( ABCD54321AB CD1 234AB CDA BDOCA BDOC人教版八年级数学知识点总结5.矩形的性质:因为 ABCD 是矩形 .3;2;1) 对 角 线 相 等( ) 四 个 角 都 是 直 角( 有 通 性) 具 有 平 行 四 边 形 的 所(6. 矩形的判定:四边形 ABCD 是矩形.边 形) 对 角 线
23、相 等 的 平 行 四( ) 三 个 角 都 是 直 角( 一 个 直 角) 平 行 四 边 形( 3217菱形的性质:因为 ABCD 是菱形.321角) 对 角 线 垂 直 且 平 分 对( ) 四 个 边 都 相 等 ;( 有 通 性 ;) 具 有 平 行 四 边 形 的 所(8菱形的判定:四边形四边形 ABCD 是菱形.边 形) 对 角 线 垂 直 的 平 行 四( ) 四 个 边 都 相 等( 一 组 邻 边 等) 平 行 四 边 形( 3219正方形的性质:因为 ABCD 是正方形 .321分 对 角) 对 角 线 相 等 垂 直 且 平( 角 都 是 直 角 ;) 四 个 边 都
24、相 等 , 四 个( 有 通 性 ;) 具 有 平 行 四 边 形 的 所( CDBA O CDBA OADBCADBCADBCOADBCO人教版八年级数学知识点总结CDA B(1) A BCDO(2)(3) 10正方形的判定:四边形 ABCD 是正方形.一 组 邻 边 等矩 形)( 一 个 直 角) 菱 形( 一 个 直 角一 组 邻 边 等) 平 行 四 边 形( 321(3)ABCD 是矩形又AD=AB 四边形 ABCD 是正方形11等腰梯形的性质:因为 ABCD 是等腰梯形 .321) 对 角 线 相 等( ;) 同 一 底 上 的 底 角 相 等( 两 底 平 行 , 两 腰 相 等
25、 ;)(12等腰梯形的判定:四边形 ABCD 是等腰梯形对 角 线 相 等) 梯 形( 底 角 相 等) 梯 形( 两 腰 相 等) 梯 形( 321(3)ABCD 是梯形且 ADBCAC=BDABCD 四 边形是等腰梯形14三角形中位线定理:三角形的中位线平行第EDCBAAB CDOAB CDOCDA B人教版八年级数学知识点总结三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四 边形,四 边形的内角,四 边 形的外角,多边形,平行 线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心 对称图形,梯形,等腰梯形,直角梯形,三角形中
26、位线,梯形中位线.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S 菱形 = ab=ch.(a、b 为菱形的对角线 ,c 为菱形的边长 ,h 为 c 边上的高)212S 平行四边形 =ah. a 为平行四边形的边,h 为 a 上的高)3S 梯形 = (a+b)h=Lh.(a、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)21四 常识:1若 n 是多边形的边数,则对角线条数公式是: .2)3n(2规则图
27、形折叠一般“出一对全等,一对相似 ”.3如图:平行四边形、矩形、菱形、正方形的从属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、E FDA BC 人教版八年级数学知识点总结矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.第十八章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们
28、就说 x 是自变量,y 是 x 的函数三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为 0 的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、 函数图象的定义:一般的, 对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐
29、标平面内由这些点组成的图形,就是这个函数的图象五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。 )人教版八年级数学知识点总结注意:列表时自变量由小到大,相差一样,有时需对称。2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式:(1)列表法 (2)图像法 (3)解析式法七、正比例函数与一次函数的概念:一般地,形如 y=kx(k 为 常数,且 k0)的函数叫做正比例函数.其中 k 叫做比例系数。 一般地,形如 y=kx+b
30、 (k,b 为常数,且 k0)的函数叫做一次函数. 当 b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图 象:正比例函数 y= kx (k 是常数, k0) 的图象是经过原点的一条直线,我们称它为直线 y= kx 。(2)性 质:当 k0 时,直线 y= kx 经过第三,一象限,从左向右上升,即随着 x 的增大y 也增大;当 k0,b0 图像经过一、二、三象限;(2)k0,b0 图像经过一、三、四象限;(3)k0,b0 图像经过一、三象限;(4)k0,b0 图像经过一、二、四象限;(5)k0,b0 图像经过二、三、四象限;(6)
31、k0,b0 图像经过二、四象限。一次函数表达式的确定求一次函数 y=kx+b(k、b 是常数,k0)时,需要由两个点来确定;求正比例函数 y=kx(k0)时,只需一个点即可. 第十九章 数据的分析数据的代表:平均数、众数、中位数、极差、方差人教版八年级数学知识点总结1解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、 样本容量问题的关键。2.平均数当给出的一组数据,都在某一常数 a 上下波动时,一般 选用简化平均数公式,其中 a 是取接近于这组数据平均数中比较“整” 的数; 当所给一组数据中有重复多次出现的数据,常选
32、用加权平均数公式。3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差最大值最小值。5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2= (x1- )2+(x2- )2+(xn- )2;方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。