收藏 分享(赏)

方程的意义课件.doc

上传人:天天快乐 文档编号:1088856 上传时间:2018-06-10 格式:DOC 页数:5 大小:15KB
下载 相关 举报
方程的意义课件.doc_第1页
第1页 / 共5页
方程的意义课件.doc_第2页
第2页 / 共5页
方程的意义课件.doc_第3页
第3页 / 共5页
方程的意义课件.doc_第4页
第4页 / 共5页
方程的意义课件.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、方程的意义课件导语:为加强学生对方程的意义的理解,下面是由小编为你整理的方程的意义课件,欢迎大家阅读。教学目标:(1)使学生理解方程概念,感受方程思想。(2)经历从生活情景到方程模型的建构过程。(3)培养学生观察、描述、分类、抽象、概括、应用等能力。教学过程:一、创设情景 ,抽象数学模式。1.出示实物天平。( 实物天平比较小,用屏幕上的天平来模拟实验。 )2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?( 说明两边的重量可能有三种不同的关系。)用式子描述重量之间的相等关系。3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗

2、?用式子表示两队比分的关系。红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了 X 分,请你猜一猜,两队的情况会怎样呢?用式子来表示比分的三种关系。4.创设四个情景。(1)每个情景中数量之间有什么关系?(2)你能用关系式清晰地来描述吗?二、引导分类 ,概括方程概念。刚才我们对情景的描述得到了很多式子。200+200=400 1823 18+X23 x=23 18+X=23280100 1204X 25+X=70 22Y+720=10501.学生尝试第一次分类。可能有几种不同的分法。(1) 看是否是等式。(2) 看是否含有未知数。2.学生尝试

3、第二次分类。得到四组不同的式子。3.描述每一组的特征。4.引导概括方程概念。含有未知数的等式叫方程。三、抓等量关系 ,体会方程本质。1.演示动态平衡。有等量关系,能用方程表示2.出示情景 (没有等量关系,不能用方程表示。)出示情景 120 元正好买 2 个玩具企鹅。 (有等量关系,能用方程表示)3.通过今天这节课,你学到了什么呢?四、联系实际 ,应用与拓展。1.周老师从无锡到徐州来上课。(1)线段图。(2)我乘火车从无锡站开出,每小时行 X 千米,7 小时到达徐州站。无锡站到徐州站的铁路长 525 千米。(3)到了徐州站,我买了 3 枝圆珠笔 ,每枝 X 元,付出 20 元,找回 2 元。2.

4、情景图。本届奥运会上 ,中国台北队获得了 X 枚金牌,中国队获得了32 枚,日本队获得 Y 枚。男孩说:“中国台北队金牌数的 16 倍正好等于中国队的金牌数。 ”女孩说:“日本队的金牌数等于中国台北队的 8 倍。 ”3.开放题。小芳集邮共 260 张,小明集邮共 300 张。怎样才能使两人的集邮张数一样多? (用方程表示)“方程的意义 ”教学设计的说明在新课程背景下 ,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课方程的意义的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探

5、索。整体的把握:数学概念不仅是局部的 ,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:形式层面 含有未知数的等式( 是关系的一种)。这是一种静态的结论。发现层面 经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。直观具体层面 举出正例或反例。直觉层面 一种数学的意识、一种方程的感觉。这样才能形成一个有力的认知结构( 其中包含知识结构、方法结构和经验结构)目标的把握:经历从现实问题到方程概念建立的过程,( 方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过

6、程。)体会方程是刻画现实世界的数学模型。渗透方程思想的三个方面 :设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。过程的把握:统揽全局基础上的局部聚集 ,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。本课方程概念的教学 ,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。经历“问题情景 数学模型解释与应用”的全过程。从“问题情景数学模型”展开数学化和结构化的过程。再从“数学模型解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报