1、育星教育网中学语文资源站()资源,未经授权,禁止用于任何商业目的。 第十一章 三角形一、三角形相关概念1三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:三条线段;不在同一直线上;首尾顺次相接2三角形的表示通常用三个大写字母表示三角形的顶点,如用 A、B、C 表示三角形的三个顶点时,此三角形可记作ABC,其中线段AB、BC、AC 是三角形的三条边,A、B、C 分别表示三角形的三个内角3三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分
2、线注意:三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线三角形有三条角平分线且相交于一点,这一点一定在三角形的内部三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线注意:三角形有三条中线,且它们相交三角形内部一点,交点叫重心画三角形中线时只需连结顶点及对边的中点即可(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高。注意:三角形的三条高是线段画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线
3、段就是该边上的高二、三角形三边关系定理三角形两边之和大于第三边,故同时满足ABC 三边长 a、b、c 的不等式有:a+bc,b+ca,c+ab三角形两边之差小于第三边,故同时满足ABC 三边长 a、b、c 的不等式有:ab-c,ba-c,cb-a注意:已知两边可得第三边的取值范围是:两边之差A , ACDB.三角形的一个外角与与之相邻的内角互补3外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角六、多边形多边形的对角线 条对角线2)3(nn 边形的内角和为(n2)180多边形的外角和为 360第十二章 全等三角形一、全等三角形1.定义:能够完全重合的两个
4、三角形叫做全等三角形。理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应
5、相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:方 法 指 引证 明 两 个 三 角 形 全 等 的 基 本 思 路 :( 1) : 已 知 两 边 -找 第 三 边 (SSS)找 夹 角 ( SAS)(2):已 知 一 边 一 角 - 已 知 一 边 和 它 的 邻 角找 是 否 有 直 角 (HL)已 知 一 边 和 它 的 对 角找 这 边 的 另 一 个 邻 角 (ASA)找 这 个 角 的 另 一 个 边
6、(SAS)找 这 边 的 对 角 (AAS)找 一 角 (AAS)已 知 角 是 直 角 , 找 一 边 (HL)(3):已 知 两 角 - 找 两 角 的 夹 边 (ASA)找 夹 边 外 的 任 意 边 (AAS)练 习二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。1、性质:角的平分线上的点到角的两边的距离相等.育星教育网中学语文资源站()资源,未经授权,禁止用于任何商业目的。 2、判定:角的内部到角的两边的距离相等的点在角的平分线上。注意:三角形的三条角平分线交于一点,这个点到三角形三边的距离相等。三、学习全等三角形应注意以下几个问题:(
7、1) 要正确区分“对应边”与“对边” , “对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、 “公共边” 、 “对顶角”(5)截长补短法证三角形全等。第十三章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那
8、么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、 轴 对 称 图 形 和 轴 对 称 的 区 别 与 联 系轴 对 称 图 形 轴 对 称区 别联 系图 形(1)轴 对 称 图 形 是 指 ( )具 有 特 殊 形 状 的 图 形 ,只 对 ( ) 图 形 而 言 ;(2)对 称 轴 ( ) 只 有 一 条(1)轴 对 称 是 指 ( )图 形的 位 置 关 系 ,必 须 涉 及( )图 形 ;(2)只 有 ( )对 称 轴 .如 果 把 轴 对 称 图 形 沿 对 称 轴分 成 两 部 分 ,那 么 这 两 个 图 形就 关 于 这 条 直 线 成
9、 轴 对 称 .如 果 把 两 个 成 轴 对 称 的 图 形拼 在 一 起 看 成 一 个 整 体 ,那么 它 就 是 一 个 轴 对 称 图 形 .B CAC BAAB C一 个一 个不 一 定 两 个两 个一 条知 识 回 顾 :4.轴对称与轴对称图形的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
10、。二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等 3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 1.在平面直角坐标系中关于 x 轴对称的点横坐标相等,纵坐标互为相反数;关于 y 轴对称的点横坐标互为相反数,纵坐标相等;关于原点对称的点横坐标和纵坐标互为相反数;点(x, y)关于 x 轴对称的点的坐标为(x, -y).点(x, y)关于 y 轴对称的点的坐标为(-x, y).点(x, y)关于 原点 对称的点的坐标为(-x,- y)2
11、.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、 (等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。 (等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 (三线合一)理解:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。 (等角对等边)五、 (等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三条边都相等,三个角都相等,并且每一个角都等于 600 。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是 600 的等腰三角形是等边三角形。
12、3.在直角三角形中,如果一个锐角等于 300,那么它所对的直角边等于斜边的一半。4、直角三角形斜边的中线等于斜边的一半。第十四章 整式乘除与因式分解1、主要知识回顾:幂的运算性质:amana mn (m、n 为正整数)同底数幂相乘,底数不变,指数相加 amn (m、n 为正整数)幂的乘方,底数不变,指数相乘 nb(n 为正整数)积的乘方等于各因式乘方的积 m a m n (a0,m、n 都是正整数,且 mn)同底数幂相除,底数不变,指数相减零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于 l负指数幂的概念:ap (a0,p 是正整数)任何一个不等于零的数的p(p 是正整数)
13、指数幂,等于这个数的 p 指数幂的倒数也可表示为:pnm(m0,n0,p 为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式的法则:多项式除以单项式,先把这
14、个多项式的每一项除以这个单项式,再把所得的商相加育星教育网中学语文资源站()资源,未经授权,禁止用于任何商业目的。 2、对含有同一个字母的一次项系数是 1 的两个一次二项式相乘 ,abxbxa)()(2其二次项系数为 1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。3平方差公式1平方差公式:两数和与这两数差的积,等于它们的平方差,即 。2)(baba其结构特征是:公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。4完全平方公式1 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)
15、它们的积的2倍,即 ;22)(baba口决:首平方,尾平方,2倍乘积在中央;2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。3在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。22)(ba5、添括号法则:添正不变号,添负各项变号,去括号法则同样6. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系.(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.分解因式的一般方法:1). 提公共因式法1.
16、如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 2. 概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式; 公因式的确定一般方法:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(cbamcba3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.(4)如果多项式的第一项的系数是负的,一般要提
17、出“”号,使括号内的第一项的系数是正的2) . 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式: (1)平方差公式: )(2baba(2)完全平方公式: 222)(3. 易错点点评:因式分解要分解到底.如 就没有分解到底.)(224yxyx4. 运用公式法:(1)平方差公式: 应是二项式或视作二项式的多项式;二项式的每项(不含符号)都是一个单项式(或多项式)的平方;二项是异号.(2)完全平方公式:应是三项式; 其中两项同号,且各为一整式的平方; 还有一项可正负,且它是前两项幂的底数乘积的 2 倍.3) 分组分解法 :1.
18、分组分解法:利用分组来分解因式的方法叫做分组分解法.如: )()()( nmbanbmabnam2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化.4) . 因式分解的思路与解题步骤 :(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.(6)分解的结
19、果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.选学: 二次三项式 的分解:qpx2abbap )(2bxaqpx规律内涵:(1)理解:把 分解因式时,如果常数项 q 是正数,那么把它分解成两个同号因数,它们的符号与一次项qpx2系数 p 的符号相同.(2)如果常数项 q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数 p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数 p.第十五章 分式 知识点一:分式的定义一般地,如果 A,B 表示两个整数,并且 B 中含有字母,那么式子 叫做分式,A 为分子,B 为分母。知识点二:与分式有关的条件分
20、式有意义:分母不为 0( )分式无意义:分母为 0( )分式值为 0:分子为 0 且分母不为 0( )BA分式值为正或大于 0:分子分母同号( 或 )0ba11育星教育网中学语文资源站()资源,未经授权,禁止用于任何商业目的。 分式值为负或小于 0:分子分母异号( 或 )0BA分式值为 1:分子分母值相等(A=B)分式值为-1:分子分母值互为相反数(A+B=0)知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于 0 的整式,分式的值不变。字母表示: , ,其中 A、B、C 是整式,C 0。CBA拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变
21、,即 注意:在应用分式的基本性质时,要注意 C 0 这个限制条件和隐含条件 B 0。知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。注意:分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。知识点五:分式的通分 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
22、 分式的通分最主要的步骤是最简公分母的确定。最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。确定最简公分母的一般步骤: 取各分母系数的最小公倍数; 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; 相同字母(或含有字母的式子)的幂的因式取指数最大的。 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。注意:分式的分母为多项式时,一般应先因式分解。知识点六:分式的四则运算与分式的乘方 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为: dbca分式除以分式:把除式的分子、分母颠倒位置后,与被
23、除式相乘。式子表示为: c 分式的乘方:把分子、分母分别乘方。式子: nba 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为: cba异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为: bdca整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为 1 的分式,再通分。 分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的
24、原因。加减后得出的结果一定要化成最简分式(或整式) 。知识点七:整数指数幂1、引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即(其中 m,n 均为整数) ( )amnanbanma0 ( ) ( ) (任何不等于零的数的零次幂都等于 1)nbn10102、科学记数法若一个数 x 是 010 的数则可以表示为 ( ,即 a 的整数部分只有一位,n 为整数)的形式,n 的确n1a1定 n=比整数部分的数位的个数少 1。如 120 000 000= 80.2知识点八:分式方程的解的步骤去分母,把方程两边同乘以各分母的最简公分母。 (产生增根的
25、过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为 0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为 0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为 0。知识点九:列分式方程解应用题基本步骤 审仔细审题,找出等量关系。 设合理设未知数。 列根据等量关系列出方程(组) 。 解解出方程(组) 。 验注意检验。 答答题。应用题常见的几种类型: (1)行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追及问题 (2)数字问题 在数字问题中要掌握十进制数的表示法 (3)工程问题 基本公式:工作量=工时工效 (4)顺水逆水问题 、 vv顺 水 水 流 静 水 v顺 水 水 流 静 水 -7 个 09 个数字