1、心智图:www.mind-map教人以渔终身受用浅谈物理学中常用的几种科学思维方法进入高三,高考在即。如何在高三物理复习中更好地提高学生的科学素质、推进知识向能力转化、提高课堂教学的效率和质量,是摆在每个老师和学生面前的重要课题。物理教学中不仅要注重基础知识、基本规律的教学;更应加强对学生进行物理学研究问题和解决问题的科学思维方法的指导与训练。英国哲学家培根说过:“跛足而不迷路,能赶过虽健步如飞,但误入歧途的人” 。学习也是这样,只有看清路,才能少走或不走弯路。可见,掌握物理学科的特点,熟悉物理研究问题和解决问题的方法是至关重要的。学好中学物理,不只是一个肯不肯用功的问题,它还有一个方法问题,
2、掌握正确的思路和方法往往能起到事半功倍的效果。下面我们从高中物理综合复习教学的角度,通过对典型问题的分析、解答、训练,介绍常用的几种科学思维方法,以期达到减轻学生负担提高复习效率的目的。1模型法 1/2等效法 2/3极端法 4/4逆思法 5/5估算法 7/6虚设法 8/7图像法 91模型法 物理模型是一种理想化的物理形态,将复杂的问题抽象化为理想化的物理模型是研究物理问题的基本方法。科学家通常利用抽象化、理想化、简化、类比等把研究对象的物理学本质特征突出出来,形成概念或实物体系,即为物理模型。模型思维法就是对研究对象或过程加以合理的简化,突出主要因素忽略次要因素,从而解决物理问题的方法。从本质
3、上说,分析物理问题的过程,就是构建物理模型的过程。通过构建物理模型,得出一幅清晰的物理图景,是解决物理问题的关键。实际中必须通过分析、判断、比较,画出过程图(过程图是思维的切入点和生长点)才能建立正确合理的物理模型。例 1 如图 11 所示,光滑的弧形槽半径为 R(RMN 弧) ,A 为弧形槽的最低点,小球 B 放在 A 点的正上方离 A 点高度为 h 处,小球 C 放在 M 点,同时释放,使两球正好在 A 点相碰,则 h 应为多大?解:对小球 B:其运动模型为自由落体运动,下落时间为 t B g2对小球 C:因为 RMN 弧,所以沿圆弧的运动模型是摆长等于 R 的单摆做简谐振动,从 M 到
4、A 的可能时间为四分之一周期的奇数倍所以 t C cTn4)12(gR2解得:h (n0,1,2)82【评注】解决本题的关键就在于建立 C 小球的运动模型单摆简谐振动,其圆弧的圆心相当于单摆的悬点,圆弧的半径相当于单摆的摆长,只要求出 C 小球运动到 A 点的时间,问题就容易解决了例 2 在光滑的水平面上有三个完全相同的小球排成一条直线,其中 2、3 小球静止,并靠在一起。而 1 小球以速度 v0朝它们运动,如图 12 所示,设碰撞中不损失机械能,则碰后三小球的速度的可能值是(A)v 1v 2v 3 (B)v 10, v 2v 3 0(C)v 1v 0/3, v2v 3 (D)v 1v 20,
5、 v 3v 00解:依题意碰撞无机械能损失,小球之间的碰撞一定是弹性碰撞,这里关键是如何建立正确的碰撞过程模型。若把 2、3 两小球看成整体,建立 1 小球和 2、3 小球之间的两体碰撞模型就会得出(C)答案错误结论。其实 2、3 小球只是靠在一起并没有连接,加之碰撞过程的位移极小,必须建立三小球之间依次碰撞的过程模型,由两球弹性碰撞得速度依次交换,所以(D)正确【评注】本题关键在于建立正确地符合客观规律的小球碰撞模型两两依次碰撞,要做到这一点必须掌握B hC M A N 图 11V01 2 3图 12心智图:www.mind-map教人以渔终身受用好基本概念和基本规律,认真分析题意,抓住问题
6、的本质才行。例 3 如图 13 所示,有一根轻质弹簧将质量为 m1和 m2的木块连在一起并置于水平面上,问必须在 m1上至少加多大的压力,才能在撤去压力后,m 1弹起来恰好使 m2离开地面?解:用力 F 向下压 m1到 A 位置放手后,m 1和弹簧应看成弹簧振子模型。在 A 位置放手时 F 即为回复力,由振子特点知振动到最高点 B 时回复力向下也为 F,又从 m1的受力知: FF 弹 m 1g 从 m2受力知恰好离地有:F 弹 m 2g 所以 F(m 1 m 2)g【评注】正确的建立模型对突出问题的本质是十分重要的,本题巧妙利用振子模型,抓住本质,出奇制胜。【针对训练】 1.如图 14 所示,
7、具有圆锥形状的回转器(陀螺) 绕它的轴在光滑的桌面上以角速度 快速旋转同时以速度 v 向左运动,若回转器的轴一直保持竖直,为使回转器从左侧桌子边缘滑出时不会与桌子边缘发生碰撞,v 至少应等于(A)R (B)H (C)R (D)RHg2g22 如图 15 所示,A 中一质量为 m 的物体系于长度分别为 l1、 l2的两根细线上, l1 的一端悬挂在天花板上,与竖直方向夹角为 , l2水平拉直,物体处于平衡状态;B 中与 A 相同只是将 l1换成轻弹簧。现将 A、B 两图中 l2线剪断,求剪断瞬时物体的加速度。3跳起摸高是中学生进行的一项体育活动,某同学身高1.80m,质量 65kg,站立举臂手指
8、能摸到的高度是 2.25m,此同学从用力蹬地到竖直跳离地面历经 0.3s,设他蹬地的力大小恒为 1300N,求该同学(g10m/s 2) (1)刚跳离地面时的速度;(2)跳起可摸到的高度。2等效法当研究的问题比较复杂,运算又很繁琐时,可以在保证研究对象的有关数据不变的前提下,用一个简单明了的问题来代替原来复杂隐晦的问题,这就是所谓的等效法。在中学物理中,诸如合力与分力、合运动与分运动、总电阻与各支路电阻以及平均值、有效值等概念都是根据等效的思想引入的。教学中若能将这种方法渗透到对物理过程的分析中去,不仅可以使问题的解决变得简单,而且对知识的灵活运用和知识向能力转化都会有很大的促进作用。例 1
9、如图 16 所示,一质量为 m、带电量为十 q 的小球从磁感应强度为 B 的匀强磁场中 A 点由静止开始下落,试求带电小球下落的最大高度?解: 这个问题中带电小球运动轨迹是比较复杂的曲线,对学生而言分析这个问题比较困难,容易错误的认为小球到达最低点时,所受洛仑兹力和重力平衡。实际上小球做曲线运动,它的受力是不平衡的。将小球刚运动时的静止状态等效为向左、右两个方向大小相等的水平初速度 V01、V 02,现使小球向右的分运动 V01产生的洛伦兹力恰好与重力平衡,则有 qV01Bmg 因而得 V01mgqB 故小球的运动可视为水平向右以速度出 V01做匀速直线运动和在竖直平面内以速度 V02沿逆时针
10、方向的匀速圆周运动的合运动。匀速圆周运动的半径RmV 02/qBg(m/qB) 2,因而小球在运动过程中下落的最大高度为Hm2R2g(mqB) 2【评注】 通过深入分析,将原来的复杂曲线运动等效为水平方向匀速直线运动和竖直面内匀速圆周运动,巧m1 BOAm2图 13图 14图 15图 16心智图:www.mind-map教人以渔终身受用妙地解答了这个复杂问题,这样可以培养学生的创新思维能力。例 2 如图 17 所示,一条长为 L 的细线,上端固定下端拴一质量为 m 的带电小球,将它置于一匀强电场中,电场强度大小为 E,方向水平向右,已知当细线离开竖直位置偏离 时,小球处于平衡。求:(1)小球带
11、何种电荷?求出小球所带电量。 (2)如果使细线偏离竖直线由 增大到 ,然后将小球由静止释放,则 应为多大时,才能使在细线到达竖直位置时小球的速度刚好为零?解:(1)小球带正电,小球受重力 mg、电场力 qE 以及细线拉力 T 三力作用,当偏角为 时,小球平衡,则重力与电场力的合力与细线的拉力等值反向,根据平衡条件可求出 q 的大小为 qmgtg/E (2)求 ,常规的解法是应用能量守恒或动能定理,但若把电场、重力场等效为合重力场,则等效合重力场的方向为OO连线方向,如图 18 所示。则解题更为新颖、简洁小球在偏角为 时的 A 点由静止释放后,围绕着 OO 连线在 AB 范围内振动,小球受细线的
12、拉力和一个合重力,大小为,它的振动与课本中的单摆振动相类似,立即22)(qEmg可得 OO 是 的平分线,如图 18,所以 2。 进一步推论:等效重力加速度 g /m ;若小球绕 O 做圆周运动等效最高点:在 O关于 O 的对称点上;若 小于 5可等效为单摆简谐振动,其周期为:T 2gl【评注】用等效法解本题的关键在于正确得出等效重力,然后再利用单摆的振动关系得出结论。其推论实际中应用很广。例 3 试分析用伏安法测量电池的电动势和内阻实验的实验误差解: 如图 19 为测量电动势和内阻实验电路图其原理是根据闭合电路的欧姆定律: UIr 0 实验中,由于电表的接人而产生了分流0或分压作用,因此使得
13、测量值与真实值之间存在一差值,为了能很快地得出实验误差的大小。我们采用等效电源法。实验中测出的电动势和内阻就是方框所包围的等效电源的电动势 和内阻 r。然后再比较测量值 、r与真实值 、r 0的数量关系便能得出实验误差的大小。 如图 19 所示,等效电源的电动势和内阻分别是: r 0rRv则测量值与真实值之间的绝对误差分别是: r 0rRv 00rRvrr0 02v这说明测量值都小于真实值。【评注】等效电源法是将虚框内的电路看成一个等效电源,等效电源的电动势为 ,内阻为 r,由这样一个等效电源向 R 供电。可见等效电动势等于方框外的路端电压,内电阻等于方框内的总电阻。【针对训练】1. 如图 1
14、10 所示,Rx 与 R1串联问 Rx 等于多少时 Rx 获得最大功率?最大动率为多少?若使 R1获得功率最大,则 Rx 的值为多少?最大功率是多少?图 17图 18图 19图 110图 111心智图:www.mind-map教人以渔终身受用2如图 111 质量为 2m 的均匀带电球 M 的半径为 R,带电量为Q,开始静止在光滑的水平面上,在通过直径的直线上开一个很小的绝缘、光滑的水平通道。现在球 M 的最左端 A 处,由静止开始释放一质量为 m、带电量为Q 的点电荷 N。若只考虑静电力,试求点电荷运动到带电球 M 的球心时受到的力及所需的时间? 3. 如图 112,电源电动势为 内阻力 r,
15、R O为定值电阻,则 R1为何值时,R1消耗的功率为最大?并求出其最大值 Pmax=?4.如图 113 所示,一弹性细绳穿过水平面上光滑的小孔 O 连接一质量为 m的小球 P,另一端固定于地面上 A 点,弹性绳的原长为 OA,劲度系数为 k。现将小球拉到 B 位置 OBL,并给小球 P 以初速度 v0,且 v0垂直 OB试求:(1)小球绕 O 点转动 90至 C 点处所需时间;(2)小球到达 C 点时的速度。3极端法所谓极端法,就是依据题目所给的具体条件,假设某种极端的物理现象或过程存在并做科学分析,从而得出正确判断或导出一般结论的方法。这种方法对分析综合能力和数学应用能力要求较高,一旦应用得
16、恰当,就能出奇制胜。常见有三种:极端值假设、临界值分析、特殊值分析。极端值假设例 1物体 A 在倾角为 的斜面上运动,如图 114 所示。若初速度为V0,它与斜面间的摩擦系数为 ,在相同的情况下, A 上滑和下滑的加速度大小之比为(A) (B) (C)tg (D)sincoicossinsin解:本题常规解法:现对 A 进行受力分析,再用牛顿第二定律求出上滑、下滑的加速度表达式,最后求出比值,得出答案。这样做费时易错。若用极端假设法求解,则能迅速准确地排除错误选项,得出结果。其步骤是:a)选参变量,做极端假设。取 为参变量,令其为最小值,即 0 b)进行极端分析。在 0 的情况下,A 上滑、下
17、滑加速度应相等为 :gsin,二者之比等于 1。把此极端值 0 代入所给选项中,发现(A) (B) (C)均不合要求 ,(B)却满足要求,故应选(B)【评注】用极端假设法解题最关键是准确、迅速地选出参变量。其一般原则是:1)被选参变量存在极值,否则不能选;2)当赋予该参变量某一特定值后,不改变题目所给的物理过程或状态,否则不能选。本题就不能选 做为参变量,这将改变题目描述的运动形式。临界值分析例 2 一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线间的夹角为 30,如图 115 所示。一条长为 L 的细绳,一端拴着一个质量为 m 的物体。物体沿锥面在水平面内绕轴线以速度 V 做匀
18、速圆周运动,求(1)当 V 时绳对物体的拉力;( 2)当 V 时绳对物体的拉力。gL61 g3解:本题涉及临界条件是:物体对锥面压力为零时,物体的速度值。如图115,物体受重力 mg、锥面的支持力 N、绳的拉力 T 三个力作用,将三力沿水平方向和竖直方向分解,由牛顿第二定律得:TsinNcos m TcosNsinmg 由两式得:sin2L图 112图 113图 114图 115心智图:www.mind-map教人以渔终身受用Nmgsinm 可见, 一定,V 越大,N 越小,当 V 增大到某值 V0时,N0 时,即 V0sinco2LV因 N 为支持力,不能为负值,故当 VV0时物体离开锥面,
19、物体飘起绳与轴线夹角增大到某值g63。(1) 当 V 时 VV 0物体飞离锥面,此时物体只受重力 mg 和拉力 T 作用,设绳与轴线的夹角g23为 : Tsin Tcosmg sinLm将 V 代入两式消去 可得 2T 23mgTm 2g2T0 解取合理值 T2mg【评注】本题涉及到物体随速度增大将要飘离锥面的临界问题,故要用临界分析法来解题。临界分析法,就是找出问题的临界条件,算出关键物理量的值进行分析比较,得出在不同条件下物体不同的状态,从而求出结果。本题关键在求出 N0 时的速度值即临界条件。特殊值分析法例 3 如图 116,两点电荷所带电量均为 Q,A 处有一电子沿两电荷连线的中垂线运
20、动,方向指向 O 点。设电子原来静止, A 点离 O 点足够远,电子只受电场力作用那么电子的运动状态是(A)先匀加速,后匀减速 (B)加速度越来越小,速度越来越大 (C)加速度越来越大,速度越来越小 ( D)加速度先变大后变小,最后变为零解:本题如定量分析有些困难,但用特殊值分析法,变得相当容易,且概念清晰。设 A 点在无限远,其电场强度为零,那么电子所受电场力为零;而在 O 点处的场强也为零,故电子在 O 点处受电场力亦为零;所以,电子在从 A 向 O 运动的过程中,所受电场力必有一个最大值,因此电场力一定由小到大,再由大到小至零。由牛顿第二定律知:加速度的值应是先由小变大,再由大变小,以至
21、最后变为零;但速度是一直增大的,可见正确答案为(D)【评注】在用特殊值分析法解题时,分析相关物理量的变化,必须注意变化过程中 “拐点(转折点) ” 的存在性, “拐点”的寻找时关键【针对训练】 1.一轻质弹簧,其上端固定下端挂一质量为 m0的平盘盘中有质量为 m 的物体当平盘静止时,弹簧长度比其自然长度伸长了 L, 今向下拉平盘使弹簧再伸长 L 后停止,然后放开手。设弹簧始终处在弹性限度之内,则刚放手时盘对物体的支持力为:(A) (LL)/Lmg (B) (LL)/L(m 0m)g (C)(L/L)mg(D) L/L (m 0m)g2如图 117 所示,一条形磁铁沿着水平方向从左向右运动,试问
22、当穿过与运动方向垂直的闭合线圈时,下列说法正确的是哪一个(A)闭合线圈中的感生电流方向不变,如图所示; (B)闭合线圈中的感生电流方向不变,与如图所示方向相反;(C)闭合线圈中的感生电流方向起初如图所示方向,后来与图示方向相反; (D)闭合线圈中的感生电流大小、方向都不变。3. 如图 1 18 的电路中,总电压 U 保持不变,滑动变阻器的总电阻力 2R,当滑动触头 P 位于中点 O 时,电流表 A1、A 2、A 3、A 4示数均为 IO。则当P 位于 O位置时 (A) A1的示数大于 I O (B) A2的示数大于 I O图 116N O Sv图 117图 118心智图:www.mind-ma
23、p教人以渔终身受用(C) A3的示数大于 I O (D) A4的示数大于 I O4逆思法在解决问题的过程中为了解题简捷,或者从正面入手有一定难度,有意识地去改变思考问题的顺序,沿着正向(由前到后、由因到果)思维的相反(由后到前、由果到因)途径思考、解决问题,这种解题方法叫逆思法。是一种具有创造性的思维方法,通常有:运用可逆性原理、运用反证归谬、运用执果索因进行逆思。运用可逆原理进行逆思例 1一颗子弹以 700m/s 的速度打穿同样的、并排放置的三块木板后速度减为零,如图 119 所示。问子弹在三块木板中运动的时间之比是多少?解:此题正向思维按匀减速直线运动来解,比较繁琐。但根据运动的可逆性,倒
24、过来从后到前,将子弹的运动看成是初速度为零的匀加速直线运动,问题就变得很简单。即初速度为零的匀加速直线运动通过连续相等位移的时间比,所以,t 3t 2t 11( 1)( ) 因此 t1t 2t 3( )2232( 1)12【评注】物理学中可逆性过程如:运动形式的可逆性、时间反演的可逆性、光路可逆性等往往正向思维解题较繁难,用逆向思维则简单明了。运用反正归谬进行逆思例 2 如图 120 所示,在水平放置的长方体空间内,有与 y轴平行的等距离平行线,是用来描述真空中水平方向的某种均匀场的示意图(长方体外的空间场的强度为零) 。现有质量较大的带电粒子 q,从A 点以速度 V0沿 AC 方向进入场中,
25、且正好从 C方向离开该场。试问这一组平行线是电场的电场线、磁场的磁场线和电场的等势线,这三种线中的哪一种?并用 m、V 0、L 和 q 来表示这个场的强度(图中截面为边长L 的正方形 AD2L,CEL) 。解: 要确定这组平行线是电场的电场线、磁场的磁场线还是电场的等势线,只能用反正法。假设是电场线,那么粒子沿 AC 方向进入场后,受竖直向下的重力和与 y 轴平行的电场力作用,这样粒子运动轨迹一定在 ADEC 平面内,不可能从 C点沿 CC方向离开电场,故不会是电场线。再假设这组等距离平行线是磁场线,则粒子进人场后,在 y 轴方向不受力作用。因此,沿 y 轴方向的水平分速度 V0cos45保持
26、不变,即等于粒子最后从 C点沿 CC方向离开时的速度 V 在 y 轴方向的水平分速度 Vcos45由此可知 VV 0 。由于粒子的质量较大,应考虑重力的作用,而洛仑兹力对粒子不做功,这样粒子的机械能应守恒,但从进入场中时机械能为 ,离开时机械能为 mgL,显然械能不201mV201m守恒,所以也不可为磁场线即使不考虑重力作用。粒子虽有可能以大小和方向与 V0都相同的速度离开该场,但也不可能在 C处(这可从粒子做螺旋运动的周期去分析) 。最后假设这组等距离平行线是等势线,则电场线应与 x 轴平行。粒子进人电场后,同时受到竖直向下的重力和水平向里的电场力作用(设粒子为正电荷,电场强度方向水平向里)
27、 。这时粒子在 y 轴方向作匀速运动,竖直方向作竖直上抛运动,水平向里作匀加速运动。粒子从 C点沿 CC离开电场时,竖直上升的速度为零,上升高度为 L;沿 y 轴方向的位移为 2L。这同射出角为 45的斜抛运动是完更符合的。因为竖值上升的高度 L 上升时间 t ,这时沿 y 轴方向的位移刚好是gV245sin020gV45sin0StV 0cos45 2L 至于要满足水平向里的速度为 V0sin45,和水平向里的位移为 L,只要粒子所受电场力等于重力就可以了。最后根据:EqL 即得电场强度 E45sin212mgmV420【评注】反证归谬是逆向思维的常用方法,基本思路是:(1)反设,即假设问题
28、结论的反面正确;(2)归谬,V0图 119图 120心智图:www.mind-map教人以渔终身受用从这个临时假设出发,利用已知条件进行正确的推理,推导出谬误的结论;(3)结论,指出反设错误,由排中律确定原来结论是正确的。它是通过否定反面,来肯定正面的。运用“执果索因”进行逆思 例 3 长度为 L 的橡皮带,一端拴住一个质量为 m 的小球,以另一端为中心,使小球在光滑水平面上做匀速圆周运动,角速度为 。若橡皮带每伸长单位长度产生的弹力为 f,试证明橡皮带的张力为 F )(22mf证明:假设所证结论正确,则将 F 展开,逐步上溯得)(22fLFfFm 2m 2fL,Ffm 2fL Fm 2 F
29、m 2(L )m 2(L ) 由题意知 fK ffK故 Fm 2(LL) 上式正是反映小球在水平面内做运速圆周运动时,所需要的向心力是由橡皮带的张力提供的,物理意义明确且步步可逆,所以得证。【评注】这种逆思法也是先假定所要证明的结论成立,由此出发,利用一定的物理知识,推导出符合题设物理模型的条件。这样把结论转化为判断条件(推理的每一步均可逆) ,以此判断所证结论确实正确、成立。1如图 121 所示,正方形导体框边长为 L,置于匀强磁场中绕中心轴做角速度为 的匀速转动当线框平面转至与磁场方向平行时,穿过线框平面的磁通量的产时瞬变化率多大?1 证明不存在如图 122 所示的电场(即电力线互相平行,
30、电力线间隔距离逐渐增大) 。3如图 123 所示。光滑水平台面上,质量 m101 千克的物块,以V09ms 的速度向右滑动。细线长 L0.1 米,上端固定于 o 点,下端系着质量m205kg 的悬球,且悬球恰好与平台上表面接触。m 1与静止的 m2发生正碰后,只有 m2可在竖直平面内作圆周运动。试求悬球沿圆周运动到最高点时,绳子最小张力多大?(悬球可视为质点,g 取 10m/s2)5估算法 所谓估算法就是对某些物理量的数量级进行大致推算或精确度要求不太高的近似计算方法。估算题与一般的计算题相比较,它虽然是不精确不严密的计算,但确是合理的近似,它可以避免繁琐的计算而着重于简捷的思维能力的培养。解
31、估算题的基本思路是:(1)抓住主要因素,忽略次要因素,从而建立理想化模型。 (2 )认真审题,注意挖掘埋藏较深的隐含条件。 (3)分析已知条件和所求量的相互关系以及物理过程所遵守的物理规律,从而找到估算依据。 (4)明确解题思路,步步为营层层剥皮求出答案,答案一般保留一到两位有效数字。例 1 估算地球大气层空气的总重量。解:设地球半径为 R,地球表面处的大气压强均为标准大气压 p0,则大气层空气的总重量 G p0 S p0 4R 21.010 543.14(6.410 6) 2510 19N【评注】此题求解的关键是抓住“大气压是由大气重量产生的”这一概念,然后从似乎缺少条件的情况下挖掘出两个隐
32、藏很深的隐含条件,即标准大气压 p0和地球半径 R。根据 G p0S 即可求出结果。例 2 质量为 m 的弹性小球置于质量为 M 的弹性球上,且 Mm,今让 M 抬高 h 自由下落如图 124 所示问 m 最高能反弹多高?解:对此题,运用有关规律列方程求解非常麻烦,运用近似模型处理就非常容易了。假定大球着地速度为 V,与地碰后反弹速度也为 V(弹性碰撞,质点模型且近似处图 121图 122图 124图 123心智图:www.mind-map教人以渔终身受用理) 。以 M 为参照系,m 与 M 碰撞时速度为 2V(向下) ,由弹性碰撞(近似运动模型)规律及 Mm,可知碰后 m 相对于 M 的速度
33、为 2V(向上) ,则 m 对地的速度为 2VV3V 。 又因 hV 2/2g,所以(3V) 22g9h(竖直上抛的运动模型) ,即小球最高能反弹 9h 高【评注】 本题作用顺序为:先 M 与地做弹性碰撞反弹,再 m 与 M 做弹性碰撞 m 相对 M 反弹,这样解题思路简捷明了。例 3 估算标准状态下气体分子间的平均距离。解:1mol 任何气体在标准状态下的体积都是 22.4103 m3,所含分子数都是 6.021023个,故每个分子占有的体积为 vV 0/NA 22.410 3 /6.021023 m33.710 26 m3 每个分子都看成是占据一个立方体的中心,那么相邻两个分子间的距离即为
34、立方体的边长,所以有 d m 3.310 9 m26107.【评注】本题关键要知道标准状态下气体的摩尔体积和分子占有体积的立方体模型,从而近似算出结果。 例 4 在太阳直射下地球表面每平方厘米每分钟获得 4.2J 的能量,试估算我国江河每年流入海洋的水流量(设年平均气温 25,汽化热为 2.4106J/kg,取一位有效数字) 。解:因为海洋约占地球面积 S 地 的 ,且只有 S 地 受太阳照射,则一年内海洋吸收太阳能为:4321E S 地 4.23652460J8.310 5S 地 J 海洋一年的总蒸发水汽量 ME/L 2143如取 25时水的汽化热为 2.44106J/kg 则 M 0.34
35、S 地 kg 65104.238地S设我国的面积为 S,则输送到我国上空的水汽量为:m 0.34S0.349.610 16kg310 16kg V 310 13 m3 即我国各江河一年流入海MS地 m洋的水流量约为 31013 m3 。【评注】 每年流入海洋的水流量近似等于每年大气送到我国上空的水汽质量。水汽遇冷凝结成雨、雪落地,通过江河流入大海。本题要知道基本的地理常识,海洋约占地球面积 S 地 的 ,地球只有半边受阳光照射,4我国的国土面积等知识。【针对训练】1.已知万有引力恒量 G6.6710 11 N m2/kg2 试求地球的质量。2.我国以成功发射了地球同步卫星,试估算同步地球卫星运
36、行的高度。3.1791 年,米被定义为:在经过巴黎的子午线上,取从赤道到北极长度的一千万分之一,请由此估算地球的半径 R。 (答案保留两位有效数字)6虚设法在物理解题中,我们常常用到一种虚拟的思维方法,即从给定的物理条件出发,假设与想象某种虚拟的东西,达到迅速、准确地解决问题的目的,我们把这种方法较虚设法。虚设法常见的几种情形是:虚设条件、虚设过程、虚设状态、虚设结论等。虚设条件例 1 如图 1-25 所示,匀强磁场 B 垂直纸面向里,导线 abc 是半径为R 的半圆周。当导线以速度 V 垂直磁场向右运动时,求导线内产生感生电动势的大小。解:本题直接求解比较困难,但若虚设用一根导线将直径 ac
37、 连接起来构成闭合回路问题就变得简单。对这个闭合回路来说,磁通量不变化,整个回路内 图 125心智图:www.mind-map教人以渔终身受用感生电动势为零。这表明直导线与半圆导线切割磁感线产生的电动势大小相等方向相反,所以可得: 圆 直 2BRV【评注】本题虚设了一段直导线使之成为闭合回路,利用闭合回路感生电动势为零很容易解决问题。利用这种方法可以解决任意形状导线的有效切割长度的问题。虚设过程例 2 质量为 M 的木块被固定在光滑的水平面上,一颗质量为 m 的子弹以速度 V0水平飞来,穿透木块后的速度为 V02。现使该木块不固定,可以在光滑水平面上滑动,同样的子弹以初速度 V0飞来射向木块,
38、如果 M/m3,那么子弹将(A) 能够射穿木块 (B) 不能穿过木块,留在木块中共同运动 (C) 刚好穿透木块但留在木块边缘共同运动 (D) 条件不足,无法判断解: 设木块放在光滑水平面上时子弹刚好能穿过木块,则由水平方向动量守恒得:mV0(Mm)V 根据功能关系知木块固定时子弹穿过木块克服阻力做功为 因是同样的木块所以穿过它克服阻力做功应相同则:)(21210VW 解得:M/m 3 可见,当 M/m3 时子弹刚好穿0过木块;当 M/m3 时子弹能穿出木块;当 M/maB 故 A、B 间有相对滑动趋势,因BAmggcos)(sin )(mg此可以判断 A、B 之间实际上存在静摩擦力, A 受到
39、静摩擦力向后,B 受到的向前,此力的大小可以求出为 fB 静 m Agcos【评注】 在分析某些未知物理问题时,可以虚设某种结论,然后进行分析推理,从而得出肯定或否定的结论,得出正确的判断。【针对训练】1. 汽车以恒定的功率沿平直的公路上由静止开始运动,经过时间 t 达到最大速度 Vm,在时间 t 内,汽车的位移为 S,则关于 S 下列说法正确的是:(A) SV mt/2 (B) SVmt/2 (C) St (B) tLB,它们都从同一水平面静止释放。到达最低点时,一下说法正确的是 ( ) (A)、它们的机械能相等 (B)、它们的动能相等 (C)、它们的加速度相等 (D)、它们对摆线的拉力相等
40、二、填空题5一个以光速行进的信号,通过一个质子直径所需的时间大约为71024 s,试估算质子的密度是水密度的 倍6. 如图 137 所示,弹簧的一端固定,另一端连着一个物体,弹簧自由时物体在 O 点,把物体拉到 A 点处由静止释放,物体沿粗糙水平面运动到 O 点时速率为 v,则在物体运动的整个过程中,速率为 v 的时刻共有 次三、计算题7. 一物体在与水平面成 30角斜向上的拉力 F 作用下,沿水平方向运动,当摩擦力最小时,物体的加速度多大?8在光滑的水平面上有一质量为 m1kg 的小球,小球与水平轻弹簧及与水平方向成 30的轻绳相连,如图 138 所示,此时小球处于静止状态,且水平面对小球的
41、弹力恰好为零,当剪断轻绳的瞬间,小球的加速度大小及方向如何?此时轻弹簧的弹力与水平面对球的弹力的比值为多少?(g 取 10m/s2)9如图 139 所示,质量为 M 的汽车载着质量为 m 的木箱以速度 v 运动,木箱与汽车上表面间的动摩擦因数为 ,木箱与汽车前端挡板相距 L,若汽车遇到障碍物制动而静止时,木箱恰好没碰到汽车前端挡板,求:(1)汽车制动时所受路面的阻力大小;( 2)汽车制动后运动的时间。10如图 140 所示,质量为 m 的小物体 B 连着轻弹簧静止于光滑水平面上,质量为 2m 的小物体 A 以速度 V0向右运动,则(1)当弹簧被压缩到最短时,弹性势能 EP为多大?(2)若小物体
42、 B 右侧固定一挡板,在小物体 A 与弹簧分离前使小物体 B 与挡板发生无机械能损失的碰撞,并在碰撞后立即将挡板撤去,则碰撞前小物体 B 的速度为多大,方可使弹性势能最大值为 2.5EP?11在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出) ,电场强度为 E,磁感应强度为 B。在某点由静止释放一个带电液滴 a,它运动到最低处恰与一个原来处于静止状态的带电液滴 b 相碰,碰后两液滴合为一体,并指水平方向做匀速直线运动,如图 141 所示。已知 a 的质量为 b 的 2 倍,a 的带电图139VL图140V0 BAM N图 135A o B o图 136AO图 13
43、7图 138心智图:www.mind-map教人以渔终身受用量是 b 的 4 倍(设 a 为间静电力可忽略) (1)试判断 a、b 液滴分别带何种电荷?(2)求 a、b 液滴相碰合为一体后,沿水平方向做匀速直线运动的速度 V。 (3)求两液滴初始位置的高度差 h。12. 如图 142 所示 OA 与 OCA 为置于水平内的光滑金属导轨,OCA 导轨满足曲线方程yl.0sin ,OA 导轨与 OCA 导轨分别在 O 点和 A 点接有电阻 R13.0 和 R26.0 体积可忽略的)(3mx定值电阻,在 xoy 平面内存在有 B 0.2T 的匀强磁场,方向如图,现有一个长 1.5m 的金属棒在水平外力F 作用下以速度 V50 m/s 水平向右匀速运动,设棒与两导轨始终接触良好,其余电阻不计,求:(1)外力 F 的最大值。 (2)金属棒在导轨上运动时 R1最大功率。 (3)金属棒滑过导轨过程中,外力所做的功。图 141图 142