收藏 分享(赏)

信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf

上传人:精品资料 文档编号:10791342 上传时间:2020-01-09 格式:PDF 页数:31 大小:2.83MB
下载 相关 举报
信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf_第1页
第1页 / 共31页
信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf_第2页
第2页 / 共31页
信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf_第3页
第3页 / 共31页
信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf_第4页
第4页 / 共31页
信号与系统_潘建寿_课后答案[1-6章].khdaw.pdf_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、1.3 1 0 ()() attftdt 2 e()() t ttdt 3 2 2 (1)(cos) ttdt 4 sin() Attdt 5 2 esin (1) 1 t t ttdt t 6 5 e() t tdt 7 00 ()() f ttttdt 8 0 esin(1) t ttdt 9 e() t d 10 1 2 1 (4) tdt 1 00 0 11 ()()()()() ttt attftdttfdtf aaaa 2 e()e()112 tt tdttdt 3 2 2 (1)(1.5)(0.5)(1.5)(0.5) tttttdt (11.5)(10.5)(11.5)(10.

2、5)4 4 sin()()sin0()cos0 AttdttAtAdtA 22 11 esin esin (5)(1) (1)(1) 11 d esin esin dt 1lim1lim 1 d 1e (1) dt tt t t tt tt ttdtttdttdt tt t t t t 6 52 5 0 e()(1)e25 tt t tdt 7 00 , tttttt 00 (2)()(2) f tttdtft 8 (1) t 11 00 0 esin(1)esin(1)(1)esin(1)()0 t ttdt tdt tdt 9 e()e()e()e()()() tt t t dddtut

3、10 1 2 1 (4)0 tdt 1.7 1e t 11 11 1e 1e 11 11 11 11 11 11 tt 11 11 11 11 tt tt 11 11 1e 11 11 tt tt 11 11 t tt 11 esin esin 1lim1lim 1lim1lim esin esin esin esin esint t 1lim1lim 1lim1lim t 1lim1lim 1lim1lim 1lim1lim tt tt 11 11 11 11 1lim1lim 1lim1lim 1lim1lim 11 11 11 11 11 11 11 11 11 e()(1)e25 e(

4、)(1)e25 e()(1)e25 52 52 dt dt 1lim1lim 1lim1lim 1e 1e 11 11 11 11 d d esin dt tt tt 11 11 dt 1lim1lim 1lim1lim esin 1e 11 11 11 1e 11 11 11 11 tt tt tt tt tt tt tt tt (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)

5、(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (1)(1.5)(0.5)(1.5)(0.5) (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5

6、)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 (11.5)(10.5)(11.5)(10.5)4 sin()()sin0()cos0 sin()()sin0()cos0 AttdttAtAdtA AttdttAtAdtA sin()()sin0()cos0 sin()()sin0()cos0 AttdttAtAdtA AttdttAtAdtA sin()()sin0()cos0 sin()()sin0()cos0 tt tt tt tt tt 1lim1lim (1)(1) (1)(1) 11 (1)(1) (1)(1) 11 11 tt 22 ttdttt

7、dttdt (1)(1) (1)(1) 22 22 (1)(1) 22 (1)(1) 22 tt 22 11 11 ttdtttdttdt (1)(1) (1)(1) 22 22 22 11 11 52 52 tt 52 52 e()(1)e25 52 52 52 e()(1)e25 52 52 e()(1)e25 e()(1)e25 e()(1)e251 ()3cos(4) 3 xtt 2 j(1) ()e t xt 3 2 ()cos(2) 3 xtt 4 j10 ()je t xt 5 (1) ()e it xt 6 ()2cos(101)sin(41) xttt 1 1 2 42 T

8、2 j(1) ()ecos(1)jsin(1) t xt tt 2 2 2 T 3 2 2 cos4 3 ()cos(2)1 32 t xtt 3 2 42 T 4 4 5 T 5 6()2cos(101)sin(41) xttt 6 10 T 1 (0) x 2 (0) x 1 1 (0)1 x 2 (0)0 x 2 (ee)() tt ut 2 1 (0)0 x 2 (0)1 x 2 (ee)() tt ut 3 1 (0)1 x 2 (0)1 x () ft (2e)() t ut 1 (0)3 x 2 (0)2 x 2() ft () yt 1 (0)1 x 1 2 (ee)() tt

9、 x yut 2 (0)1 x 2 2 (ee)() tt x yut () ft () f yt 1 (0)1 x 2 (0)1 x () ft 2 2 (0)1 (0)1 x(0)1 (0)1 (0)1 (0)1 (0)1 (0)1 2 2 (0)1 (0)1 x x 2 (0)2 (0)2 x (0) (0)1 (0)1 (0)1 (0)1 (0)1 (0)2 (0)2 (0)2 (0)2 (0)212 22 (2e)()(1)()()(ee)()(ee)()() tt t t t xxf f utyytytututyt 2 ()(2ee)() tt f yt ut 1 (0)3 x 2

10、 (0)2 x 2() ft 12 2 ()3()2()2()(47e3e)() tt xxf ytytytyt ut 1.13 ()() ftut ()ecos()()cos()()(2) t gttuttutut ()() ftt () ht ()() ftt () ht () gt ()()()2ecos()()()sin()(2)(2) 4 t htgtttutttututt htgtttutttututt htgtttutttututt ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()(

11、)sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2) ()()()2ecos()()()sin()(2)(2)0 + 1 2 ()4()5()(),(0)1,(0)2,()e() t ytytytftyyftut 2 ()4()3()()(),(0)0,(0)1,()() yty

12、tytftftyyftut 1 2 ()e() t ftut 22 ()4()5()e()2e() tt ytytyttut 2 e() t t () y t () yt () y t () yt () yt 0 t 0 0 00000 22 00000 ()4()5()e()2e() tt y tdtytdtytdttdtutdt (0)(0)4(0)(0)1 yyyy (0)(0)1 yy (0)(0)0 yy (0)1 y (0)2 y (0)(0)1 (0)(0)13 yy yy 2 ()() ftut ()4()3()()() ytytyttut () t 0 0 00000 000

13、00 ()4()3()()() y tdtytdtytdttdtutdt () yt 0 t (0)(0)4(0)(0)1 yyyy yt 0 t yt (0)(0)1 yy (0)(0)0 yy (0)(0)1 (0)(0)1 yy yy (0)(0)1 (0)(0)1 yy yy yy (0)(0)1 (0)(0)13 ()() ()() f f()() ()() ()() ()() 00000 00000 22 00000 00000 00000 00000 22 ()4()5()e()2e() ()4()5()e()2e() 22 22 00000 00000 22 22 00000

14、00000 22 22 22 00000 00000 00000 00000 00000 00000 00000 ()4()5()e()2e() ()4()5()e()2e() ()4()5()e()2e() 00000 00000 ()4()5()e()2e() ()4()5()e()2e() 22 22 00000 00000 22 22 00000 00000 22 22 22 22 ()4()5()e()2e() ()4()5()e()2e() ()4()5()e()2e() ()4()5()e()2e() ()4()5()e()2e() ()4()5()e()2e() 22 22 (

15、0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)4(0)(0)1 (0)(0)0 (0)(0)0 yy (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)0 (0)(0)1 (0)(0)1 (0)(0)13 (0)(0

16、)1 (0)(0)1 (0)(0)13 (0)(0)13 (0)(0)13 (0)(0)1 (0)(0)1 (0)(0)1 yy yy (0)(0)1 (0)(0)1 (0)(0)1 (0)(0)13 yy yy (0)(0)13 (0)(0)13 (0)(0)13 (0)(0)1 (0)(0)1 (0)(0)1 (0)(0)13 (0)(0)13 (0)(0)13 ()() ()() ()() y()4()3()()()(0)0 y (0)1 y (0)(0)0 (0)(0)12 yy yy 2.7 ()3()2()()3() ytytytftft 4 ()e() t ftut 24 147

17、1 ()(eee)() 326 ttt ytut () ht () f y t () x y t 2.10 1 5 LH 1 CF 1 2 R () L it 2.10 KCL ()()()() sRCL itititit ()() R utRit ()() L d utLit dt ()() C d itCut dt 2 2 ()()()() CCLS dLd LCitititit dtRdt ()2()5()5() LLLS itititit ()2()5()5 (0)0,(0)0 LLL LL ititit ii 0 t itititit ()() ()() ()() ()() ()()

18、 2.10 2.10 ()()()() ()()()() sRCL sRCL ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()() ()() ()() ()() utLit utLit1 ()ecos(2)sin(2)1 2 t L ittt0 t 1 ()ecos(2)sin(2)1() 2 t gt ttut 5 ()()esin(2)() 2 t d htgt tut dt 2.12 2.12 ()()(4) ftut

19、ut + - () ft () yt () yt 2.12 2.12 0 ()()() t ytftyd ()()() ytftyt ()()() ytytft () ht ()() ftt ()()() hthtt () ht () t () ht () t () ht 0 0 (0)(0)00 hh (0)(0)1 hh () ht (0) h = (0) h =0 (0) h =0 (0) h =1 () ht ()()0 htht (0) h =0 (0) h =1 12 () jt jt htCeCe 0 t () () ht ht () () ()()() hthtt hthtt

20、()()() ()()() ()()() hthtt hthtt hthtt tftyd tftyd ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()()(0) h = 1 C+ 2 C=1 (0) h =j 1 C -j 2 C =0 1 C = 1 2 2 C = 1 2 1 ()()

21、cos() 2 jtjt hteeuttut () ht ()()(4) ftutut ()()() f ythtft cos()()()(4) tututut sin()()(4) tutut ()4()5()2()(), ytytytytft (0)0,(0)1,(0)1 yyy () ht ()() ftt 0 t ()() x ytht 32 2 2 4520 (1)(32)0 (1)(2)0 1 1 2 1 3 2 12 1 3 2 2 123 ()() ttt x ythtCeCeCe ()() ftt ()4()5()2()() hthththtt 00 () ht () t (

22、) ht 00000 00000 ()4()5()2()() htdthtdthtdthtdttdt (0)(0)4(0)(0)5(0)(0)01 hhhhhh (0)(0)(0)0 hhh 2 2 1 1 tytytytft ()4()5()2()(), ()4()5()2()(), 2 2 2 2 4520 4520 (1)(32)0 (1)(32)0 (1)(2)0 (1)(2)0 4520 4520 (1)(32)0 (1)(32)0 (1)(32)0 2 2 (1)(2)0 (1)(2)0 (1)(2)0 2 2 4520 4520 4520 4520 (1)(32)0 (1)(32

23、)0 (1)(32)0 (1)(2)0 (1)(2)0 (1)(2)0 2 2 3 2 2 3 3(0)1 h (0)(0)0 hh 13 123 123 (0)00 (0)20 (0)241 hCC hCCC hCCC 13 CC 23 CC 3 1 C 1 1 C 2 1 C 3 1 C 22 () (1) ttttt hteteetee 0 t() ft (j) F (2) tft (2)() tft (2)(2) tft () dft t dt (1)(1) tft 1 (2)() 22 ftFj 11 (2)()() 2222 d j tftFjFj d 1 (2)() 22 tft

24、jFj (2)()()2()()2() tfttftftjFjFj 11 (2)(2)(2)2(2)()2() 2222 tfttftftjFjFj 1 ()() 222 jFjFj ()() ftjFj ()() d j tftjFj d () ()() dft tFjFj dt (1)(1)(1)(1)() () jj d tftfttftFjejFje d () j jFje 10 1sin 10 t t d t sin a d aa 1sin t d ()() ()() ()() ()() ()() ()() ()() ()() ()() ()() ()() j j tftjFj tf

25、tjFj ()() ()() tftjFj tftjFj tftjFj j j tftjFj tftjFj ()() ()() tftjFj dft dft tFjFj (2)()()2()()2() (2)()()2()()2() tfttftftjFjFj (2)()()2()()2() (2)()()2()()2() (2)()()2()()2() 11 11 2222 2222 tfttftftjFjFj (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() 11 11 11 2222 2222 (2)(2)(2)2(2)()

26、2() (2)(2)(2)2(2)()2() 11 (2)(2)(2)2(2)()2() 11 (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() (2)(2)(2)2(2)()2() 1 1 j j j j ()() ()() ()() ()() ()() ()() ()() d d tftjFj ()() ()() ()() ()() d d tftjFj ()() ()() () () dft () tFjFj tFjFj tFjFj () () df

27、t dft () () dt dt tFjFj tFjFj tFjFj tFjFj tFjFj tFjFj (1)(1)(1)(1)() (1)(1)(1)(1)()11 2 jtjt ee d j 1111 22 jt jt ed ed jj 12 2 jt ed j 2 sgn() t j 10 1sin sgn() 10 t t dt t ()() 2 gtSa 2 ()2() a gtaSaa 2 1 ()2() 2 jt a gtaSaaed 0 t 2 1(0)() a a gSaad sin() a d aa 0 a 0 a sin()sin() aa sin a d aa ()

28、 ft () ft ()() 2 gtSa 1 1 12 ()() Satg aa aa a a sin sina a d aa a aa aa 0 sin()sin() sin()sin() aa aa aa0 1 1 120 ()() jt Sateg 0 1 1 120 ()() jt Sateg 11 2020 ()()() Fjgg 00 11 11 1 10 ()() 2 ()cos() jt jt SateSate Satt 1 10 2 ()()cos() ftSatt 0 ecos()(),0 at tuta 2 e(1) t ut () x t () x t () x t

29、() x t d 00 0 ecos()()e() 2 jtjt atat ee tutut 00 1 e()e() 2 jt jt at at uteute 1 e() at ut aj 0 0 1 e() () jt at ute aj 0 0 1 e() () jt at ute aj0 2 2 0 cos at aj etut aj 2 ()e(1) t ftut 2 ()e(1) tjt Fjutedt 1 2 e tjt edt 1 2(1) jt eedt 3 1 j e j 12113 xtutututututut 1313 utututut 1 ()() ut j 1 (1)

30、() j ut e j 1 (1)() j ut e j 3 1 (3)() j ut e j 3 1 ()()(13) jjj Fj eee j 3 1 13 jjj eee j 2 ()() ftgt ()()() ftftxt 2 ()2() gtSa () x t 2 ()()()2()2()4() XjFjFjSaSaSa (1)() (1)() (1)() (1)() (1)() (1)() (1)() (1)() j j (1)() (1)() j j (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)(

31、) (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() (3)() 12113 e 1 (3)() (3)() (3)() (3)() (3)() (3)() j j (3)() j j 1 1 ()()(13) ()()(13) 1 ()()(13) ()()(13) ()()(13) ()()(13) ()()(13) ()()(13) ()()(13) ()()(13)112 211 ()(1) jt jt jt Fjedttedtedt 22 2 jjjjjjjj eeeeeeee jj j 2

32、2 2 jjjj eeee j 2 2sin2cos2 j 2 2 sincos2 j 2122 nn x ttntn ()2(2)() nn Fj n n 1 ()x t 2 ()x t 1 ()x t 1 () X 2 ()x t 2 () X 2 1 () xt 2 2 ()x t 2 3 2 3.19 21 ()(23) xtxt 3 2 21 1 ()() 22 j XeX 00 (j)()() Fuu 0 0 0 (j) 0 F 00 (j)()() F x 3.19 3.19 ()(23) ()(23) ()(23) ()(23) 1 1 () ()x x 1 () () ()

33、2 ()(23) ()(23) ()(23) ()(23) ()(23) ()(23) ()(23) ()(23) ()(23) ()(23)0 002 (j)()() Fg 0 02 0 ()() Satg 0 2 g 0 0 Sat () Fj 0 0 () Sat 0 0 0 0 2 0 (j) () 0 Fg 0 0 20 ()() gSat () Fj 2 0 0 2 () Sat 000 sin()()() tj 00 ()() 0 sin() t j () Fj 0 sin() t j sin() sin() sin()a100 St 2 a100 St a100a50 StSt

34、 2 a100a60 StSt s T ss f 100 , 100 Ss Tf 200 , 200 ss Tf 100 , 100 ss Tf 20 , 20 ss Tf x t X yt Y 2 () H 3 W 0 3 W 1 cos(3) Wt yt cos(3) Wt 1 () H 1 5 W3 W3 W5 W xt () X 2 W 2 W 1 0 x t 2 n W 4 W 0,2; X W cos5 x tWt 1 cos5554.81 2 xtWtXWXW 507,3 XWWW 507,3 4.82 XWWW 1 H 11 1 554.83 2 XWHXWH 5 XW53 W

35、W X 02 W 5 XW35 WW () X 20 W x x n 1 1 cos5554.81 cos5554.81 1 2 cos5554.81 cos5554.81 1 cos5554.81 cos5554.81 cos5554.81 cos5554.81 cos5554.81 cos5554.81 cos5554.81 cos5554.814.83 cos3 Wt 11 1 55*33 4 XWHXWHWW 11 1 8323 4 X WHWXWHW 11 23834.84 XWHWXWHW 4.84 2 H 2 H 12 12 2323 yjXWHWHXWHWH 31 32 22

36、XWHXWH 31 1 2 3 HHWH 31 () H 3 W 2 W 0 32 1 2 3 HHWH 32 () H 3 W2 W 0 3 W 7 W 5 W 7 W 5 W 3 W 0 3 W 5 W 5 W 3 W 0 32 32 () () H H 32 32 () 3 3 W W 2 2 W W2W 6W 8W 2W 6W 8W 0 2W 2W Y 0 x t M ()0 X yt x t c cos t c cos ytxtt A chch ch cos() c t 1 () H A h l l h x t 2 zt yt 0 4.10 () H 222 ()()cos()()c

37、os()2()cos() ccc ztxttxttxtt ()()cos() c ytxtt 22 (),cos() c xtt M 2 () x t 2 M 2 cos() c t ,2 c 2()cos() c xtt , c 2 M 2 cos() c t ; L cMhcM zt ytxtt ytxtt ytxtt ytxtt ytxtt ytxtt ytxtt 1 1 () () H 1 () () h h h l l l 0 0 4.10 4.102 ch c 2 xt 2 lcmm 2 cos() c t 2 hcmc ,2 M cMcM /3 Mc yt x t yt xt 0

38、, m X m 0 y 0 0 m m X Y X X yt m l () X l m 0 4.10 b m m 0 0 0m ml () X m 0 4.10 b ml cos() m t () xt () yt m m 0 2 () H cos() m t () xt () yt m m 0 2 () H m m5.1 1 (1) ut 2 22 (ee)() tt ut 3(1)() tut 4 (1e)() t tut 1 1 (1):Re0 S uteROCS S 2 22 11 (ee)():Re2 22 tt ut ROCS SS 3 22 R 111 1 :e0 S tuttu

39、tutROCS SSS (4) 2 11 1R1 (1):e tt teututteut SS ROCS 5.8 () ft () Fs () Fs () ft (0) f () f 3 2 2 (0)lim()lim0 (2) ss s fsFs ss 2 0 21 ()lim()lim (2)2 ss s fsFs ss 5 2 2 (1) (0)lim()lim0 (4) s ss se fsFs ss 2 2 0 (1) ()lim()lim0 (4) s ss se fsFs ss 5.10 10 = 2 2 22 121 12 SS SS ee ee SS ()()2(1)(1)(

40、2)(2) fttuttuttut 12 = 2 2222 s e ss sinsin22 fttuttut 5.20 LTI 1 ()() ftt 1 ()()e() t yttut 2 ()() ftut 2 ()3e() t ytut 0 fsFs fsFs 0 ()lim()lim0 ()lim()lim0 ()lim()lim0 0 (1) (0)lim()lim0 (0)lim()lim0 (1) se se (1) (0)lim()lim0 (0)lim()lim0 (0)lim()lim0 (1) (0)lim()lim0 ss ss (0)lim()lim0 (0)lim()

41、lim0 (0)lim()lim0 ()lim()lim0 ()lim()lim0 ()lim()lim0 0ss 0 ()lim()lim0 ()lim()lim0 ()lim()lim0 () f f 2 (1) (1) 2 (0)lim()lim0 (0)lim()lim0 2 2 (1) (1) (4) (4) 2 2 (0)lim()lim0 (0)lim()lim0 2 2 s (1) (1) (1) (1) (1) (1) ss (4) (1) (0)lim()lim0 (0)lim()lim0 (0)lim()lim0 (0)lim()lim0 (4) (1) ()lim()l

42、im0 ()lim()lim0 ()lim()lim0 (1) se se (1) ()lim()lim0 ()lim()lim0 ()lim()lim0 (1) fsFs ()lim()lim0 ss ss ()lim()lim0 ()lim()lim0 ()lim()lim0 ()lim()lim01 2 3 ()e() t ftut 2 4 ()()(1) fttutut 1 yt 2 yt 1x1 22 ()()() ()()() x YsYsHsFs YsYsHsFs 12 12 ()() () ()() YsYs Hs FsFs 12 1 ()1,() FsFs s 12 13 (

43、)1,() 11 YsYs ss 2 () 1 x Ys s () 1 s Hs s 1 2 3 ()() t fteut 3 1 () 2 Fs s 33 2212 ()()()() 12112 x s YsYsHsFs sssss 2 3 ()(2)() tt yteeut 2 4 ()()(1) fttutut 4 22 11 () s s Fse ss 4 111 () 21 s e Ys ssss 2 4 ()(1)()(1) tt yteeutut 5.21 5.21 () S it () ut 0 () ut () S it 1 2 F 1 2 H 0 () ut () a ()

44、 S ut 1 2 F 1 2 H () b 0 () ut 5.21 ()()(1) ()()(1) ()()(1) ()()(1) 111 111 21 21 ssss ssss 21 21 ssss ssss ssss 21 21 21 yteeutut yteeutut 4 2212 2212 12112 12112 sssss sssss 12112 12112 12112 12112 12112 12112 ()(2)() ()(2)() 4 22 11 11 () () Fse Fse 22 Fse 4 11 11 () () ss Fse Fse Fse Fse 22 s s

45、e ssss ssss 21 ()(1)()(1) ()(1)()(1) yteeutut ()(1)()(1) ()(1)()(1) ()(1)()(1) ()(1)()(1) ()(1)()(1)1 (a) (a) S 2 s 1 2 s 0 () us () S iS 0 21 2 1 2 2 s s s UsIs s s = 2 12 4 s ss = 2 2 4 s (a) 0 () ut 0 ()sin2() uttutV 2 (b) (b) S () S US 1 2 S 2 S 0 () US 0 22 2 1 ()122 () 12 424 1 4 S Us s s Us s

46、sC s sC sss RsC sC s = 2 2 3 3 13 s (b) 0 () ut 0 2 ()sin3() 3 t utetutV 5.25 2 ()ecos() t fttut 2 2 ()Re2 (2)1 s Fss s () f t (j) F () () 12 12 S S Us Us () () S S RsC RsC 12 sC sC RsC RsC RsC 122 122 12 12 ssC ssC 122 122 12 12 12 sC sC 12 12 12 RsC RsC 12 12 sC ssC ssC ssC ssC ssC sC RsC RsC 12 s

47、sC 12 ssC ssC ssC 122 122 122 ssC = 2 2 2 3 3 3 130 Re2,20 s 2 2 ()()| (2)1 sj j FjFs j 5.26 2 1 () ,Re2 (3)(2) Fs s ss () Fs 1,2 3 2,3 ss 11 122 2 23 2 kkk Fs ss s 2 11 2 2 12 2 23 (2)()|1 (2)()|1 (3)()|1 s s s ksFs ksFs ksFs 2 111 () (2)23 Fs sss 223 ()( )() ttt f tteeeut )() )() )()6.3 ()sin xtt

48、0 t ()cos ytt () xt 2 1 () 1 Xs s () yt 2 () 1 s Ys s () () () Ys Hss Xs 6.4 6.4 12100 CCf 122000 RR S 11 12 1 1122 2 2 1 ()()()() 1 ()()()() XsRIsIsIs sc XsRIsRIsIs sc () XS 1 () IS 2 () IS 1 R 2 R 1 1 SC 2 1 SC () YS 6.4 S 2 2 () 100004000400 sXs I ss 222 1100()25() () 4401001025 XsXs YsI scssss (

49、)10()25()25() ytytytxt 6.10 2 2 ()() 8116()116() () dytdyt ytxt dtdt 1 1122 1122 ()()()() ()()()() 1122 1122 ()()()() ()()()() ()()()() 1122 1122 ()()()() ()()()() ()()()() 1122 1122 1122 () () X X() () () 1 1 () () IS IS 1 1 () () () 2 2 2 ()()()() ()()()() 2 2 ()()()() ()()()() ()()()() 2 2 sc sc 1 R R 12 3 1 2 ()8()116()116() sYssYsYsXs 2 116 () 8116 Hs ss 2 12 :410;:410 PjPj

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报