收藏 分享(赏)

高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt

上传人:无敌 文档编号:1075335 上传时间:2018-06-10 格式:PPT 页数:14 大小:311.30KB
下载 相关 举报
高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt_第1页
第1页 / 共14页
高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt_第2页
第2页 / 共14页
高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt_第3页
第3页 / 共14页
高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt_第4页
第4页 / 共14页
高中数学人教b版选修1-1课件:1.2.1 “且”与“或”.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、1.2.1“且”与“或”,1.了解“且”与“或”的含义.2.能判断由“且”与“或”组成的新命题的真假.,【做一做1】 用“且”联结命题p,q构成新命题,并判断新命题的真假:p:16是2的倍数;q:16是8的倍数.分析:由“且”命题的定义写出新命题:16是2的倍数且是8的倍数.因命题p,q都是真命题,故新命题是真命题.解:pq:16是2的倍数且是8的倍数,新命题是真命题.,归纳总结判断“且”命题的真假时,首先判断所给两个命题的真假,再利用“且”命题的真值表进行判定.,【做一做2】 用“或”联结命题p,q构成新命题,并判断新命题的真假:p:菱形的对角线互相平分;q:菱形的对角线相等.分析:由“或”

2、命题的定义写出新命题:菱形的对角线相等或互相平分.因命题p是真命题,q是假命题,故新命题是真命题.解:pq:菱形的对角线相等或互相平分,新命题是真命题.,归纳总结判断“或”命题的真假时,首先判断所给两个命题的真假,再利用“或”命题的真值表进行判定.,1.如何理解联结词“且”?剖析:“且”与集合中“交集”的概念有关,与AB=x|xA,且xB中的“且”意义相同,即“xA”与“xB”这两个条件都要满足.例如,电子保险门在“钥匙插入”且“密码正确”两个条件都满足时,才会开启,相应的电路就叫与门电路.,2.如何理解联结词“或”?剖析:“或”与集合中“并集”的概念有关,与AB=x|xA或xB中的“或”意义

3、相同,它是指“xA”与“xB”中至少有一个是成立的,既可以是xA,且xB,也可以是xB,且xA,也可以是xA,且xB.这与生活中“或”的含义不完全相同,例如:“你去图书馆或去游泳馆”,两者不可能同时发生,再如,日常生活中,我们认为“苹果是长在树上或长在地里”这句话是不正确的.,名师点拨“且”与“或”只有用来联结两个命题时,才称其为逻辑联结词.如,命题“方程|x|=1的解是x=1或x=-1”中的“或”就不是逻辑联结词.,题型一,题型二,题型三,“pq”形式的命题及其真假的判定【例1】 分别写出由下列各组命题构成的“pq”形式的新命题,并判断它们的真假:(1)p:30是5的倍数;q:30是8的倍数

4、.(2)p:矩形的对角线互相平分;q:矩形的对角线相等.(3)p:x=1是方程x-1=0的根;q:x=1是方程x+1=0的根.分析:用逻辑联结词“且”把命题p,q联结起来构成“pq”形式的命题;利用命题“pq”的真值表判断其真假.,题型一,题型二,题型三,反思(1)写“且”命题时,若两个命题有公共的主语,后一个命题可省略主语.(2)判断“且”命题真假的方法和步骤:先判断每一个命题的真假;利用真值表判断“且”命题的真假.,解:(1)pq:30是5的倍数且是8的倍数.由于命题p是真命题,命题q是假命题,故命题pq是假命题.(2)pq:矩形的对角线互相平分且相等.由于命题p和q都是真命题,故命题pq

5、是真命题.(3)pq:x=1是方程x-1=0的根且是方程x+1=0的根.由于命题p是真命题,命题q是假命题,故命题pq是假命题.,题型一,题型二,题型三,“pq”形式的命题及其真假的判定【例2】 分别写出由下列各组命题构成的“pq”形式的命题,并判断它们的真假:(1)p:正多边形各边相等;q:正多边形各内角相等.(2)p:线段中垂线上的点到线段两个端点的距离相等;q:角平分线上的点到角的两边的距离不相等.(3)p:正六边形的对角线都相等;q:偶数都是4的倍数.分析:用逻辑联结词“或”把命题p,q联结起来构成“pq”形式的命题;利用命题“pq”的真值表判断其真假.,题型一,题型二,题型三,解:(

6、1)pq:正多边形各边相等或各内角相等.由于命题p是真命题,命题q是真命题,故命题pq是真命题.(2)pq:线段中垂线上的点到线段两个端点的距离相等或角平分线上的点到角的两边的距离不相等.由于命题p是真命题,命题q是假命题,故命题pq是真命题.(3)pq:正六边形的对角线都相等或偶数都是4的倍数.由于命题p是假命题,命题q是假命题,故命题pq是假命题.,反思(1)写“或”命题时,若两个命题有公共的主语,后一个命题可省略主语.(2)判断“或”命题真假的步骤:判断每一个命题的真假;利用真值表判断“或”命题的真假.,题型一,题型二,题型三,易错题型【例3】 (1)命题“等腰三角形顶角的平分线垂直平分

7、底边”是由“或”或“且”构成的新命题吗?若是,指出是哪种形式;若不是,说明理由.(2)命题“不等式x21的解集是x|x1或x-1”的构成形式是“pq”吗?为什么?(1)错解:不是由“或”或“且”构成的新命题.理由:因为命题中不含有逻辑联结词“或”或“且”.错因分析:没有注意到该命题是省略联结词“且”的命题.,题型一,题型二,题型三,正解:所给命题可改写为“等腰三角形顶角的平分线垂直且平分底边”,也就是“等腰三角形顶角的平分线垂直底边且等腰三角形顶角的平分线平分底边”,故该命题是由“且”构成的新命题.构成形式:pq.(2)错解:是.因为该命题中含有逻辑联结词“或”.错因分析:没有注意到“或”联结的不是两个命题.正解:该命题的构成形式不是“pq”,因为“或”联结的不是两个命题.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报