1、 v Journal of East China University of Science and TechnologyVol. 27 No. 62001-12 “:SE1 S “(29636010); Z gv S/7 “( 995211001 ); Z g S/ (00QE14045)E-mail: qifang- w l : 2000-12-19Te: Z(1975-), 3, , V 3,1V Y , 0!#V T。cI|: 1006-3080(2001)06-0626-05BJ=A MEV 汪齐方1, 李春忠1* , 王志庭2, 杨化桂1, 康春雷1, 方图南1(1.华东理工大学超
2、细材料制备与应用教育部重点实验室,上海 200237;2. 石家庄宝石电气硝子玻璃有限公司,石家庄 050053)K1:在流化床反应器中,利用六甲基二硅胺烷( HMDS)对气相法制备的纳米二氧化硅进行了表面包覆,研究了包覆温度、包覆时间、 HMDS分压等对纳米二氧化硅表面羟基、含碳量、pH值的影响,分析了表面包覆后气相法白炭黑的形态与结构。结果表明气相法白炭黑表面包覆 HMDS后,团聚状态得到明显改善;随着处理时间的延长,温度的升高以及 HMDS分压的升高,经表面处理后的白炭黑的 pH值和含碳量增加,表面羟基数明显减少。反应时间小于 15min时,包覆速率较快,然后趋于平缓;反应温度小于 25
3、0C时,温度对包覆效果影响较大,温度大于 400C则影响较小;HMDS分压较低时,分压对包覆效果影响较大,当分压超过 7. 9kPa,则影响甚微。1oM:气相法白炭黑;六甲基二硅胺烷;表面改性;表面羟基ms |: O631. 3DS M : AFumed Silica Modified by HexamethyldisilazaneWANGQi-fang1, LIChun-zhong1* , WANGZhi-ting2, YANG Hua-gui1,KANGChun-lei1, FANGTu-nan1(1.Key Laboratory forUltrafineMaterialsof the M
4、inistryof EducationECUST,Shanghai 200237,China;2. Shijiazhuang Baoshi ElectricGlassCo. Ltd, Shijiazhuang 050053, China)Abstract: Fumed silica was modified with hexamethyldisilazane ( HMDS) in a fluidized bed reactor,and then the structure and morphology of it were characterized by TEM, FTIR etc. The
5、 results indicatethat the agglomeration of fumed silica is restrained by HMDS modification. The pHvalue of fumed silicaandits carbon content in fumed silica increase and silanol groups onits surfaces decrease with theincreas-ing modification time, temperature and HMDS partial pressure. The coating r
6、ate of HMDSis high at thefirst 15min, and thendecreases rapidly with coating time. The coating rateis strongly dependent on the re-action temperature and HMDS partial pressure when the modificationtemperatureand HMDS partial pres-sure is less than 250Cand 7. 9kPa respectively.Key words: fumed silica
7、; HMDS; surface modification; surface silanol groupsME A X 3V , =Ax ,y 、9(M,、p 、D0、/ 5W。 MEV iA、 #!VV u, P T , 4M s 。 4 ME 4s ,A V , | | V i, MM 1 2。 MV ,* 626“ AE3, AE 4 ,O s 4B 4、 。 MEV v_E) 。 70M, HairHertl b F5, oA BJ=AQ q,?CQ q | 1, O?CV Vs 4 5。 80 M,Mathias N$ ,V “2. 5 SiOH/nm2,i M wL6。 90 M,
8、Tsutsumi 1 AM) M) Y,?C ME) 1AMEl,V ME) Vz?7。 5Q , BJ=A( HMDS) ME! , =A V , 、 HW、 HMDSs, =AV 、c 、pHY。1 LZE1. 1 L ME, Z oa“zK ,1V 278m2 /g, pH3. 0; N2, Z,Bv99. 9% ; HMDS,sB,S ,Bl98% ; Y?,sB,ZB。1. 2 L # BHq/,% 0 V LC ( , /% R 8W V LCz(8 11。 L 5TV Q , =50mm,5600mm; v=108mm,300mm。 L m1 U。 5VA2 “ s, V 200
9、CP。 g B Y, Bs0. 2MPa HMDS, HMDSN2 ,B 5, Px 5 。 5 F F ,DWT-702 eN e。 5 g B l“, 8V r V r b。1. 3 k/ #ZEMEV ) -v i0A( JEM-1200EXII);c Yanoco MT-5 sN;NICOLET 5SXC; N; sCOULTER LS sN;7V ) -V (N)E12: |2gb200mL ,F 25mL Y?, F 75mL w= 0. 20NaCl A。H P ( s , 0. 1mol/LHCl A0. 1mol/L NaOH|pH4。 F 0. 1mol/L NaOH A,
10、 PpH 69, 20s,ipHM。G/ T,9 Z , V (N):m1 ME V L mFig. 1 Schematic diagram of experimental setup1 cylinder of nitrogen; 2 silica gel dryer; 3 Heater;4 Nitrogen preheater; 5 Flow indicator; 6 HMDStanker; 7 Fluidized bed reactor; 8 Thermocouple; 9Collector; 10 Water filterN = CVN A 10- 3Sm: C NaOH i(mol/L
11、);V pHV469 H h0. 1mol/L NaOH8(mL);NA F ;S ME1V (nm2 /g);m ME (g)。2 LT#) 2. 1 M m2V 300C, HMDSs676. 7Pa H, HW/v。m2 V A,V ) MER v C,1 V c, _oMT, R WC。VHMDSV ) ,v A , V s$ |,7V “h P R MW _oTh 。6276 Z: BJ=A MEV m2 V ) -v Fig. 2 Agglomeratemorphology of fumed silica before and after surface modificationa
12、 Untreated; b Treated for 15min; c Treated for 60minm3V ) -,COULTER LS sN ME s。- ( 0. 204m, 0. 153m, s z; ( 0. 117m, 0. 104m, s N。N Vn,V ) v 0hl,y 0) -V MT 1) 0MT 。VV ) V s JA, MT W , “s Hq/s 。m3 - ME (dp )smFig. 3 Particle size distribution of fumed silica2. 2 V x 5 H, % z(。V , |V ,QZ T /:SiS O H+
13、(CH3)3Si NHSi( CH3)32SiS O Si(CH3)3+ NH3V ) -; m4。 L1) , L2 L5sYV HW m。3 747cm- 1)AC B l,1 c #。,3 747cm- 1) l h ,2 965cm- 1)C l。B C Ho , V cC Hos0。m4 - ME LFig. 4 Infrared spectra of fumed silica before and aftertreated with HMDS1 Untreated; 2 Treated for 15 min; 3 Treated for 30min;4 Treated for 45
14、min; 5 Treated for 60min2. 3 ) HWY300C, HMDSs3. 3kPa H,)628 v 27 HWpH、V c Ym5 U。pHc Q HW79F,V 5 Q HW7h 。15min -,pHV3. 00 65. 02,cV0 62. 04% ,V V1. 6/nm20. 92/nm2;7Q45min, pHV5. 0265. 70,c 5V2. 04% 62. 52% ,V 5V0. 96/nm20. 64/nm2。V Q HW =,Q y,yV (。 “Q,v HMDS JA( Si( CH3)3)V 13 ,| V ,E sV 。“) HWwM,x 5
15、 =? ,9F (, pHc 6,V /。m5 HWpH、V 、c 1“Fig. 5 RelationshipbetweenmodificationtimeandpHvalue,surface number of silanol groups, carbon content2. 4 ) Y) HW15min, HMDSs5. 96kPaH,pH、V c Y m6。pHc ( 67 6,7V 5 67h 。150C 250CW t A,pHV4. 565. 5,c V1. 95% 62. 38% ,V 5V0. 88/nm20. 68/nm2。250C400CW HM A,pHV5. 5 66.
16、 1,c V2. 38% 62. 48% ,V V0. 68/nm20. 56/nm2。B LTV 250C -,V Yv; 250C,Y th 。 V ? 250C HV vsX,N HQ y,Y A。 “ 6,Q , X Es 。m6 pH、V 、c 1“Fig. 6 The relationship between modification temperatureand pH value, surface number of silanol groups,carbon content2. 5 ) 4sYQ300C、Q HW15min H,HMDS spH、V c Y m7 U。pHc (
17、 ) 4s 67 6,V 5 ) 4s67h 。 HMDSs0. 66kPa H,V f vM, pHVV ) 3. 0 64. 3,c V0 61. 6% ,V V1. 60/nm21. 16/nm2。N f /V i,$ |, NsV ) r。?9F) 4s,V ) Q?, pHV4. 3 65. 3,c V1. 6% 62. 7% ,V V1. 16/nm20. 51/nm2。 ) 4sr8. 65kPa H,r 。3 ( 1) MEV ,v v , 0WMT Ah ;V 6296 Z: BJ=A MEV m7 spH、V 、c 1“Fig. 7 The relationship bet
18、ween HMDS partial pressureand pH value, surface number of silanol groups,carbon content, MEV Ah ,pHc A 6。(2)Q -15min y,pHc 6 y,V h 9 y, M t。(3)Ql250CV Y v,250C 400CWY l, 400C Y;(4) HMDSs H y, “s9F,V /,c pH 6,sv7. 9kPa H5M。 ID: 1 ,Z3. MEV J.A #,1999,(5): 15-18. 2 , . ME gsJ.A #,1999,(3): 22-24. 3 Ile
19、r R K. The Chemistry of SilicaM . New York: Wiley-Interscience, 1979. 4 Hair M L, HertlW. Reaction of chlorosilaneswith silica sur-face J. Journal of Physical Chemistry, 1971, 75: 2 181-2 185. 5 Hertl W. Mechanism of gaseous siloxane reaction with silicaIIJ. Journal of Physical Chemistry, 1968, 72:
20、1 248-1 253. 6 Mathias J, Wannemacher G. Basic characteristics andapplications of aerosilJ. Journal of Colloid and InterfaceScience, 1988, 125: 61-67. 7 Tsutsumi K, Takahashi H. Studies of silica modification ofsolidsJ. Colloid ,b ,.%8 R “d S b# qJ.v,1983, (4): 97-107. 9 .% R CVD/ D. Z: v,1994.10 b
21、, ,. # s 5 “ #5 nYJ.Q,1985,( 1): 47-54.11 b , ,.%x +# YJ.Q,1988,(1): 89-92.12 .E ME1V ) J.W,1993,(4),380-383.13 Abdelhalim K, Eugene P, Henri B, et al. Characterization ofsolylated silicas by inverse gas chromatography modelizationof the poly(dimethylsiloxane)monomer unit/surface interac-tionsusing
22、poly(dimethylsiloxane)ologomers as probesJ.Journal of Colloid and Interface Science, 1996, 184: 586-593./ ?V K1!t ; X H F8!#徐 猛1, 卫 军2, 严 明2, 李 臻2, 张祖传2, 杨曜中1(1.华东理工大学生物工程学院上海 200237; 2. 中国科学院上海生物化学与细胞研究所上海 200031)K1:将含有谷胱甘肽转硫酶(GST)基因的 pGEX质粒转入大肠杆菌 TG1后,在 0. 5mmol /L异丙基硫代-U-D-半乳糖苷(IPTG)诱导培养下表达了 GST,用亲和纯化得到的 GST免疫新西兰大白兔,获得了滴度(ELISA)在 2 105以上的抗血清,纯化后的抗体已成功地应用于两种新的融合蛋白 GST-FLP和 GST-PreS1的免疫印迹检测和亲和层析法纯化。630 v 27