分享
分享赚钱 收藏 举报 版权申诉 / 9

类型北师大数学八年级上册第七章练习题命题、证明及平行线的判定定理(基础).doc

  • 上传人:精品资料
  • 文档编号:10689614
  • 上传时间:2019-12-28
  • 格式:DOC
  • 页数:9
  • 大小:283KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北师大数学八年级上册第七章练习题命题、证明及平行线的判定定理(基础).doc
    资源描述:

    1、命题、证明及平行线的判定定理(基础)知识讲解【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:

    2、(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果那么”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作

    3、为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行要点诠释:(1)平行公理特别强调“经过直线外一点” ,而非直线上的点,要区别于垂线的第一性质(2)公理中“有”说明存在;“只有”说明唯一(3) “平行公理的

    4、推论”也叫平行线的传递性.2平行线的判定定理判定方法 1:同位角相等,两直线平行.如上图,几何语言: 32 ABCD(同位角相等,两直线平行)判定方法 2:内错角相等,两直线平行.如上图,几何语言: 12 ABCD(内错角相等,两直线平行)判定方法 3:同旁内角互补,两直线平行.如上图,几何语言: 42180 ABCD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角

    5、三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】 (2) , (3) , (6)是定义.2说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)如果 ,那么 ;,abcac(2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件: ;结论: .它是真命题.,cc(2)条件:两个角相等;结论:这两个角是对顶角.它是

    6、假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】 (2013贵港)下列四个命题中,属于真命题的是( ).A若 ,则 B若 ab,则 am bm2amC两个等腰三角形必定相似 D位似图形一定是相似图形【答案】D类型二、公理、定理及证明3证明:等角的余角相等【思路点拨】如果题目中没有明确指出“条件”和“结论” ,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:12,1+390,2+4

    7、=90.求证:34.证明:1+3=90,2+4=90, (已知)3=90-1,4=90-2.(等式的性质)1=2(已知) ,3=4(等量代换).【总结升华】 “等角的余角相等”与“等角的补角相等”可以作为今后证明的依据此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】 “垂线段最短”是( ).A定义 B定理 C公理 D不是命题【答案】B类型三、平行线的判定定理4. (2016淄博)如图,一个由 4 条线段构成的“鱼” 形图案,其中1=50,2=50,3=130,找出图中的平行线,并说明理由【思路点拨】根据同位角相等,两直线平行证明 OBAC,根据同旁内角

    8、互补,两直线平行证明 OABC 【答案与解析】解:OABC, OBAC1=50, 2=50,1=2,OBAC ,2=50, 3=130,2+3=180 ,OABC【总结升华】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键举一反三:【变式】 (2015 宁城)如图,下列能判定 ABCD 的条件有( )个(1)B+ BCD=180;(2) 1=2;(3)3= 4;(4 )B= 5A1 B2 C3 D4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,1= 2,AD

    9、BC,而不能判定 ABCD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确正确的为(1) 、 (3) 、 (4) ,共 3 个;故选:C5.(2015日照期末)如图,ABCD,AE 平分BAD,CD 与 AE 相交于F,CFE=E求证:ADBC【答案与解析】证明:AE 平分BAD,1=2,ABCD,CFE= E,1=CFE=E,2=E,ADBC【总结升华】主要考查角平分线的性质以及平行线的判定定理举一反三:【变式】已知,如图,EFEG ,GM EG, 1=2,AB 与 CD 平行吗?请说明理由【答案】解:ABCD 理由如下:如图

    10、: EFEG,GMEG (已知), FEQMGE90(垂直的定义)又 12(已知), FEQ -1MGE -2 (等式性质),即34 ABCD (同位角相等,两直线平行)命题、证明及平行线的判定定理(基础)巩固练习【巩固练习】一、选择题1.下列命题中,属于定义的是( ).A、两点确定一条直线 B、同角的余角相等 C、两直线平行,内错角相等 D、点到直线的距离是该点到这条直线的垂线段的长度2下列真命题的个数是 ( ).过一点有且只有一条直线与已知直线平行;两条不相交的直线叫做平行线;在同一平面内不相交的两条射线是平行线A0 个 B1 个 C2 个 D3 个3若直线 ab,bc ,则 ac 的依据

    11、是 ( ).A平行的性质B等量代换C平行于同一直线的两条直线平行.D以上都不对4 (2016来宾)如图,在下列条件中,不能判定直线 a 与 b 平行的是( ).A1=2 B2=3 C3=5 D3+4=1805如图所示,给出了过直线 外一点 P 作已知直线 l 的平行线的方法,其依据是 ( ).lA同位角相等,两直线平行 . B内错角相等,两直线平行.C同旁内角互补,两直线平行. D以上都不对.6 (2015金华)以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线 a,b 互相平行的是( )A如图 1,展开后测得1=2B如图 2,展开后测得1=2 且3=4C如图 3,测得1=2D如图 4,

    12、展开后再沿 CD 折叠,两条折痕的交点为 O,测得 OA=OB,OC=OD二、填空题7.(2016 春南和县期末)如图所示,请你填一个适当的条件: 使 ADBC .8如图所示,直线 a,b 被 c 所截,130,2:31:5,则直线 a 与 b 的位置关系是_9如图,直线 a 和 b 被直线 c 所截,1110,当2_时,有直线 ab 成立10 (2015 春 台州)长方形 ABCD 中,ADB=20,现将这一长方形纸片沿 AF 折叠,若使 ABBD,则折痕 AF 与 AB 的夹角 BAF 应为 11小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直

    13、线时,第十条直线与第一条直线的位置关系是_12. 已知直线 a、b 都过点 M,且直线 al,bl ,那么直线 a、b 是同一条直线,根据是_三、解答题13.求证:邻补角的角平分线互相垂直.14 (2015 春 邵阳)如图,已知点 E 在 AB 上,且 CE 平分BCD,DE 平分 ADC,且DEC=90,试判断 AD 与 BC 的位置关系,并说明理由15如图所示,160,260,3100,要使 ABEF,4 应为多少度,说明理由【答案与解析】一、选择题1.【答案】D; 2.【答案】A; 【解析】该点若在已知直线上,画不出与已知直线平行的直线;平行线的定义必须强调在同一平面内,如图中的 AB

    14、与 CC不相交,但也不平行 如图中,射线 AB与射线 CD 既不相交,也不平行3 【答案】C; 【解析】这是平行线的传递性,其实质是平行公理的推论4. 【答案】C; 【解析】根据平行线的判定即可得出 C 选项不符合.5. 【答案】A; 【解析】这种作法的依据是:同位角相等,两直线平行6. 【答案】C; 【解析】 解:A、1=2,根据内错角相等,两直线平行进行判定,故正确;B、1=2 且3=4,由图可知1+2=180,3+4=180,1=2=3=4=90,ab(内错角相等,两直线平行) ,故正确;C、测得1=2,1 与2 即不是内错角也不是同位角,不一定能判定两直线平行,故错误;D、在AOB 和

    15、COD 中,AOBCOD,CAO=DBO,ab(内错角相等,两直线平行) ,故正确故选:C二、填空题7. 【答案】ADC=DBC(答案不唯一)【解析】内错角相等,两直线平行.8 【答案】平行;【解析】由已知可得:230,所以12,可得:ab.9 【答案】70;10.【答案】55; 【解析】解:四边形 ABCD 是矩形,ADB=20,ABD=70ABBD, BAB=110ABF 由ABF 翻折而成,BAF= BAB=55故答案为:5511.【答案】平行;【解析】平行公理的推论12.【答案】过直线外一点有且只有一条直线与这条直线平行;【解析】这是平行公理的具体内容.三、解答题13.【解析】已知:如

    16、下图,AOD 与DOB 互为邻补角,且射线 OC 是AOD 的角平分线,射线 OE 是DOB 的角平分线.求证:OCOE证明:AOD 与DOB 互为邻补角,AODDOB180.又射线 OC 是AOD 的角平分线,射线 OE 是DOB 的角平分线,COD AOD,DOE DOB ,(角平分线的定义)1212COECODDOE AOD DOB (AODDOB) .(等量代换)1809所以 OCOE.14 【解析】解:EDC+ECD+DEC=180,DEC=90,EDC+ECD=90由 CE 平分BCD,DE 平分 ADC,ADC+BCD=2( EDC+ECD)=180 ,ADBC15. 【解析】解: 4100理由如下: 160,260, 12 ABCD又 34100, CDEF ABEF

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北师大数学八年级上册第七章练习题命题、证明及平行线的判定定理(基础).doc
    链接地址:https://www.docduoduo.com/p-10689614.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开