收藏 分享(赏)

七年级一元一次方程应用题分类汇集.doc

上传人:精品资料 文档编号:10632648 上传时间:2019-12-10 格式:DOC 页数:29 大小:68.50KB
下载 相关 举报
七年级一元一次方程应用题分类汇集.doc_第1页
第1页 / 共29页
七年级一元一次方程应用题分类汇集.doc_第2页
第2页 / 共29页
七年级一元一次方程应用题分类汇集.doc_第3页
第3页 / 共29页
七年级一元一次方程应用题分类汇集.doc_第4页
第4页 / 共29页
七年级一元一次方程应用题分类汇集.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、1七年级一元一次方程应用题分类汇集一、列方程解应用题的一般步骤(解题思路)(1)审审题:认真审题,弄清题意.(2)找出能够表示本题含义的相等关系(找出等量关系) (3)设设出未知数:根据提问,巧设未知数 (注意带上单位)(4)列列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(5)解解方程:解所列的方程,求出未知数的值(6)检验:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案(7)答(注意带上单位)二、具体分类(一)行程问题画图分析法(线段图)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常

2、借助画草图来分析,理解行程问题。1.行程问题中的三个基本量及其关系:路程速度时间 时间路程速度 速度路程时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距(3)航行问题:顺水(风)速度静水(风)速度水流(风)速度逆水(风)速度静水(风)速度水流(风)速度水流速度=(顺水速度-逆水速度)2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系即顺水逆水问题常用等量关系:顺水路程=逆水路程常见的还有:相背而行;行船问题;环形跑道问题;隧道问题;时钟问题等。常用的等量关系:1、甲、乙二人相向相遇问题甲走的路程乙走的路程总路程 二人所用的时间相等或

3、有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题2甲走的路程乙走的路程提前量 二人所用的时间相等或有提前量3、单人往返 各段路程和总路程 各段时间和总时间 匀速行驶时速度不变4、行船问题与飞机飞行问题 顺水速度静水速度水流速度 逆水速度静水速度水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。例题分析:例 1:甲、乙两站相距 480 公里,一列慢车从甲站开出,每小时行 90 公里,一列快车从乙站开出,每小时行 140 公里。(1)慢车先开出 1 小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时

4、开出,相背而行多少小时后两车相距 600 公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距 600 公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)例 2:人从家里骑自行车到学校。若每小时行 15 千米,可比预定的时间早到 15 分钟;若每小时行 9 千米,可比预定的时间晚到 15 分钟;求从家里到学校的路程有多少千米?例 3:某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可

5、在规定的时间到达 B地,但他因事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两地间的距离。例 4:甲、乙两人同时同地同向而行,甲的速度是 4 千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走 10 分钟与乙相遇,求乙的速度。3例 5:甲、乙两人同时从 A 地前往相距 25.5 千米的 B 地,甲骑自行车,乙步行,甲的速度比乙的速度的 2 倍还快 2 千米/时,甲先到达 B 地后,立即由 B 地返回,在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。6、一次远足活动中,一部分人步行,另一部分乘一辆汽

6、车,两部分人同地出发。汽车速度是 60 千米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是 60 千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、休息日我和妈妈从家里出发一同去外婆家,我们走了 1 小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时 6 千米的速度去追我们,如果我和妈妈每小时行 2 千米,从家里到外婆家需要 1 小时 45 分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(提示:此题为典型的追击问题)8、甲骑自行车从 A 地到 B 地,乙骑

7、自行车从 B 到 A 地,两人都匀速前进,已知两人在上午8 时同时出发,到上午 10 时,两人还相距 36 千米,到中午 12 时,两人又相距 36 千米,求 A、B 两地间的路程。9、甲乙两人在 400 米的环形跑道上跑步,从同一起点同时出发,甲的速度是 5 米/秒,乙的速度是 3 米/秒。(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?10、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时 3.6km,骑自行车的人的速度是每小时 10.8km。如果一列火车从他们背后开来,它通过4行人的时间是 22 秒,通过骑自行车的人的时间是 2

8、6 秒。 行人的速度为每秒多少米? 这列火车的车长是多少米?11.一列客车长 200 m,一列货车长 280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过 16 秒,已知客车与货车的速度之比是 32,问两车每秒各行驶多少米?12、一列火车匀速行驶,经过一条长 300m 的隧道需要 20s 的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是 10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。13、甲、乙两人相距 5 千米,分别以 2 千米/时的速度相向而行,同时一只小狗以 12 千米/时的速度从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后

9、又奔向乙直到甲、乙相遇,求小狗所走的路程。行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。流水问题有如下两个基本公式:顺水速度=船速+水速 (V 顺=V 静+V 水) 逆水速度=船速-水速 (V 顺=V 静-V 水)例 14: 一艘船在两个码头之间航行,水流速度是 3 千米每小时,顺水航行需要 2 小时,逆水航行需要 3 小时,求两码头的之间的距离?例 15、一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50 分钟,逆风飞行需要 3 小时,求两城市间的距离。16、某船从 A 码头顺流航行到 B 码头,然后逆流返行到 C 码头,共行 20 小时,已

10、知船在静5水中的速度为 7.5 千米/时,水流的速度为 2.5 千米/时,若 A 与 C 的距离比 A 与 B 的距离短 40 千米,求 A 与 B 的距离。巩固练习:练习 1:甲、乙两人在相距 18 千米的两地同时出发,相向而行,1 小时 48 分相遇,如果甲比乙早出发 40 分钟,那么在乙出发 1 小时 30 分相遇,当甲比乙每小时快 1 千米时,求甲、乙两人的速度。练习 2:某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分钟;若每小时行 9 千米,可比预定时间晚到 15 分钟;求从家里到学校的路程有多少千米?练习 3:一列客车车长 200 米,一列货车车长 2

11、80 米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少米?练习 4:某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可在规定的时间到达 B 地,但他因事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两地间的距离。练习 5:两列火车分别行驶在平行的轨道上,其中快车车长为 100 米,慢车车长 150 米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为 5 秒。 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用

12、的时间各是多少? 如果两车同向而行,慢车速度为 8 米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?练习 6:甲、乙两人同时从 A 地前往相距 25.5 千米的 B 地,甲骑自行车,乙步行,甲的速6度比乙的速度的 2 倍还快 2 千米/时,甲先到达 B 地后,立即由 B 地返回,在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。练习 7:一辆汽车上午 10:00 从安阳出发匀速行驶,途经曲沟、水冶、铜冶三地,时间如下表,地名 安阳 曲沟 铜冶时间 10:00 10:15 11:00水冶在曲沟和铜冶两地之间,距曲沟 10

13、 千米,距铜冶 20 千米,安阳到水冶的路程有多少千米?练习 8:甲骑自行车从 A 地到 B 地,乙骑自行车从 B 到 A 地,两人都匀速前进,已知两人在上午 8 时同时出发,到上午 10 时,两人还相距 36 千米,到中午 12 时,两人又相距 36千米,求 A、B 两地间的路程。 (两种方法)练习 9:一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50分钟,逆风飞行需要 3 小时,求两城市间的距离。练习 10:小明在静水中划船的速度为 10 千米/时,今往返于某条河,逆水用了 9 小时,顺水用了 6 小时,求该河的水流速度。练习 11:某船从 A 码头顺流航

14、行到 B 码头,然后逆流返行到 C 码头,共行 20 小时,已知船在静水中的速度为 7.5 千米/时,水流的速度为 2.5 千米/时,若 A 与 C 的距离比 A 与 B的距离短 40 千米,求 A 与 B 的距离。7(二)工程问题:(1) 、工程问题中的三个量及其关系为:工作总量=工作效率工作时间工作总量=人均工作效率工作时间人数(2) 、经常在题目中未给出工作总量时,设工作总量为单位 1。即完成某项任务的各工作量的和总工作量1工程问题常用等量关系:先做的+后做的=完成量例题分析例 1: 一件工程,甲独做需 15 天完成,乙独做需 12 天完成,现先由甲、乙合作 3 天后,甲有其他任务,剩下

15、工程由乙单独完成,问乙还要几天才能完成全部工程?例 2:某工程由甲、乙两队完成,甲队单独完成需 16 天,乙队单独完成需 12 天。如先由甲队做 4 天,然后两队合做,问再做几天后可完成工程的六分之五?例题 3:甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的 ,问甲、乙两队单独32做,各需多少天?例4:已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池注满,出水管工作24小时可以将满池的水放完;如果同时打开进水管和出水管,求几小时后可以把空池注满?例 5:一水池有一个进水管,4 小时可以注满空池,

16、池底有一个出水管 ,6 小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?8例 6:一个水池安有甲乙丙三个水管,甲单独开 12h 注满水池,乙单独开 8h 注满,丙单独开 24h 可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?例 7:整理一批图书,由一个人做要 40 小时完成。现计划由一部分人先做 4 小时,再增加2 人和他们一起做 8 小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。巩固练习:练习 1:甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的 ,问

17、甲、乙两队单独做,各需多少天?练习 2:一项工程 300 人共做, 需要 40 天,如果要求提前 10 天完成,问需要增多少人?练习 3:甲、乙两个水池共蓄水 50t,甲池用去 5t,乙池又注入 8t 后,甲池的水比乙池的水少 3t,问原来甲、乙两个水池各有多少吨水?练习 4:某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个在这 16 名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一个甲种零件可获利16 元,每加工一个乙种零件可获利 24 元若此车间一共获利 1440 元,求这一天有几个工人加工甲种零件9(三)和差倍分问题(1)倍数关系:通过关键词语“是几

18、倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。例题分析例 1旅行社的一辆汽车在第一次旅程中用去油箱里汽油的 25%,第二次旅程中用去剩余汽油的 40%,这样油箱中剩的汽油比两次所用的汽油少 1 公斤,求油箱里原有汽油多少公斤?巩固练习:练习 1:某单位今年为灾区捐款 2 万 5 千元,比去年的 2 倍还多 1000 元,去年该单位为灾区捐款多少元?练习 2:某车间加工 30 个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做 1 个零件,问甲工人每天能做几个零件?原计划

19、几天完成?(四)比例分配问题比例分配问题的一般思路为:设其中一份为 x ,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。1、学校有电视和幻灯机共 90 台,已知电视机和幻灯机的台数比为 2 :3,求学校有电视机和幻灯机各多少台? 2、 如果两个课外兴趣小组共有人数 54 人,两个小数的人数之比是 4:5;如果设人数少的一组有 4x 人,那么人数多的一组有_人,可列方程为: _3、甲乙两人身上的钱数之比为 7:6,两人去商店买东西后,甲花去 50 元,乙花去 60 时,10此时他们身上的钱数之比为 3:2,则他们身上余下的钱数分别是多少?4、某洗衣机厂生产三种型号的洗衣机共 1

20、500 台,已知 A、B、C 三种型号的洗衣机的数量比是 2:3:5、则三种型号的洗衣机各生产多少台?6、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?7、甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?8、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。(五)劳力调配问题: 这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)

21、只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。11例题分析:例 1:某厂一车间有 64 人,二车间有 56 人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?例 2:甲、乙两车间各有工人若干,如果从乙车间调 100 人到甲车间,那么甲车间的人数是乙车间剩余人数的 6 倍;如果从甲车间调 100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。分析:如果从甲车间调 100 人到乙车间,这时两车间人相等.设乙车间 x 人,则甲车间x+200 人例 3:甲队人数是乙队人数的 2 倍,从甲队调 12 人到乙队后

22、,甲队剩下的人数是原乙队人数的一半还多 15 人,求甲、乙两队原有人数各多少人?巩固练习:练习 1:有两个工程队,甲队有 285 人,乙队有 183 人,若要求乙队人数是甲队人数的 ,应从乙队调多少人到甲队?(六)分配问题:例题分析:例 1:学校分配学生住宿,如果每室住 8 人,还少 12 个床位,如果每室住 9 人,则空出两个房间。求房间的个数和学生的人数。12例 2:学校春游,如果每辆汽车坐 45 人,则有 28 人没有上车;如果每辆坐 50 人,则空出一辆汽车,并且有一辆车还可以坐 12 人,问共有多少学生,多少汽车?例 3:有一些相同的房间需要粉刷,一天 3 名师傅去粉刷 8 个房间,

23、结果有 40墙面未来得及刷;同样的时间内 5 名徒弟粉刷了 9 个房间的墙面。每名师傅比徒弟一天多刷 30的墙面。求每个房间需要粉刷的墙面面积是多少平方米?(七)配套问题:这类问题的关键是找对配套的两类物体的数量关系(比值) 。1.某车间有 28 名工人生产螺栓和螺母,每人每小时平均能生产螺栓 12 个或螺母 18 个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)2机械厂加工车间有 85 名工人,平均每人每天加工大齿轮 16 个或小齿轮 10 个,已知 2个大齿轮与 3 个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

24、3.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。134某队有45人参加挖土和运土劳动每人每天挖土4方或运土6方应该怎样分配挖土和运土的人数才能书每天挖出的土?5.包装厂有工人 42 人,每个工人平均每小时可以生产圆形铁片 120 片,或长方形铁片 80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?6.某部队派出一支有 25 人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土 18 袋或每 2 人每小

25、时可抬泥土 14 袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。7.某厂生产一批西装,每 2 米布可以裁上衣 3 件,或裁裤子 4 条,现有花呢 240 米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?(八)年龄问题:例题分析:例 1:甲比乙大 15 岁,5 年前甲的年龄是乙的年龄的两倍,乙现在的年龄是几岁?2、小华的爸爸现在的年龄比小华大 25 岁,8 年后小华爸爸的年龄是小华的 3 倍多 5 岁,14求小华现在的年龄。3、三位同学甲乙丙,甲比乙大 1 岁,乙比丙大 2 岁,三人的年龄之和为 41,求乙同学的年龄. 4、今年哥俩的岁数加起来是 55 岁。曾经有一年,

26、哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?5兄弟二人今年分别为 15 岁和 9 岁,多少年后兄的年龄是弟的年龄的 2 倍?(九)数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为 a,十位数字是 b,个位数字为c(其中 a、b、c 均为整数,且 1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大 1;偶数用 2n表示,连续的偶数用 2n+2 或 2n2 表示;奇数用 2n+1 或 2n1 表示。例 1.有一个三位数,个位数字为百位数字的 2 倍,十位数字比百位

27、数字大 1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的 2 倍少 49,求原数。2. 一个三位数,三个数位上的数字之和是 17,百位上的数比十位上的数大 7,个位上的数是十位上的数的 3 倍,求这个三位数.153. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大 36,求原来的两位数巩固练习:练习1:一个两位数,十位上的数字与个位上的数字之和为8,把这个两位数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求原来的两位数?练习 2:一个两位数,十位上的数字与个位上的数字之和为 11,如果把十位上的数字与个位上

28、的数字对调,那么得到的新数就比原数大 63,求原来的两位数。练习 3:三位数的数字之和是 17,百位上的数字与十位上的数字的和比个位上的数大 3,如把百位上的数字与个位上的数字对调,所得的新数比原数大 495,求原数练习 4:有一个两位数,它的十位上的数字比个位上的数字小 3,十位上的数字与个位上的数字之和等于这个两位数的 ,求这个两位数。41练习 5:将连续的奇数 1,3,5,7,9,排成如下的数表:3937353331 29272523211917151311 9753116(1)十字框中的五个数的平均数与 15 有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能

29、等于 315 吗?若能,请求出这五个数;若不能,请说明理由.(十)比赛积分问题:1、某企业对应聘人员进行英语考试,试题由 50 道选择题组成,评分标准规定:每道题的答案选对得 3 分,不选得 0 分,选错倒扣 1 分。已知某人有 5 道题未作,得了 103 分,则这个人选错了几道题?2、某学校七年级 8 个班进行足球友谊赛,采用胜一场得 3 分,平一场得 1 分,负一场得 0分的记分制。某班与其他 7 个队各赛 1 场后,以不败的战绩积 17 分,那么该班共胜了几场比赛?3、小明在一次篮球比赛中,共投中 15 个球(其中包括 2 分球和 3 分球) ,共得 34 分,则小明共投中 2 分球和

30、3 分球各多少个?(十一)销售问题(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价) 、利润等。(2)利润问题常用等量关系:17商品利润商品售价商品进价商品标价折扣率商品进价商品利润率商 品 利 润商 品 进 价100%商 品 售 价 商 品 进 价商 品 进 价100%(3)商品销售额商品销售价商品销售量商品的销售利润(销售价成本价) 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打 8 折出售,即按原标价的 80%出售即商品售价=商品标价折扣率1、 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15元,这种服装每件的进价

31、是多少?2、某商品的销售价格每件 900 元,为了参加市场竞争,商店按售价的九折再让利 40 元销售,此时仍可获利 10%,此商品的进价是多少元?3、某商店在同一时间内以每件 60 元的价格卖出 2 件衣服,其中一件盈利 25%,另一件亏损 25%,则卖这 2 件衣服是盈利还是亏损了,还是不盈不亏?4.某件商品进价为800元,出售时标价为1200元,现准备打折出售该商品,但要保证利润率不低于5,则最多可打几折?185、某商品进价 1500 元,提高 40%后标价,若打折销售,使其利润率为 20%,则此商品是按几折销售的?6、一商场把彩电按标价的九折出售,仍可获利 20%,如果该彩电的进货价是

32、2400 元,那么彩电的标价是多少元?7、商店里有种型号的电视机,每台售价 1200 元,可盈利 20%,现有一客商以 11500 元的总价购买了若干台这咱型号的电视机,这样商店仍有 15%的利润,问客商买了几台电视机?8、 现对某商品降价 10促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价 60 元一双,八折出售后商家获利润率为 40%,问这种皮鞋标价是多少元?优惠价是多少元?192. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15元,这种服装每件的进价是多少

33、?3.一家商店将一种自行车按进价提高 45%后标价,又以八折优惠卖出,结果每辆仍获利 50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是 x 元,那么所列方程为( )A.45%(1+80%)x-x=50 B. 80%(1+45%)x - x = 50C. x-80%(1+45%)x = 50 D.80%(1-45%)x - x = 504某商品的进价为 800 元,出售时标价为 1200 元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于 5%,则至多打几折5一家商店将某种型号的彩电先按原售价提高 40%,然后在广告中写上“大酬宾,八折优惠” 经顾客投拆后,拆法部门按

34、已得非法收入的 10 倍处以每台 2700 元的罚款,求每台彩电的原售价(十三)增长率问题:1、某化肥厂去年生产化肥 3200 吨,今年计划生产 3600 吨,今年计划比去年增产 %202、某加工厂有出米率为 70%的稻谷加工大米,现在加工大米 100 公斤,设要这种大米 x 公斤,则列出的正确的方程是 。 。3、某印刷厂第三季度印刷了科技书籍 50 万册,而第四季度印刷了 58 万册,求季度的增长率是多少?4、两个班组工人,按计划本月应共生产 680 个零件,实际第一组超额 20、第二组超额15完成了本月任务,因此比原计划多生产 118 个零件。问本月原计划每组各生产多少个零件?5、甲、乙两

35、厂去年完成任务的 112%和 110%,共生产机床 4000 台,比原来两厂任务之和超产 400 台,问甲厂原来的生产任务是多少台?6、民航规定:乘坐飞机普通舱旅客一人最多可免费携带 20 千克行李,超过部分每千克按飞机票价的 1.5购买行李票。一名旅客带了 35 千克行李乘机,机票连同行李费共付了1323 元,求该旅客的机票票价。7、某村去年种植的油菜籽亩产量达 150 千克,含油率为 40。今年改种新选育的油菜籽后亩产量提高了 30 千克,含油率提高了 10 百分点。今年与去年相比,油菜的种植面积减少了 40 亩,而村榨油厂用本村所产油菜籽的产油量提高了 20。(1)求今年油菜的种植面积。

36、21设今年油菜的种植面积是 x 亩。完成下表后再列方程解答。亩产量(千克/亩)种植面积(亩)油菜籽总产量(千克)含油率 产油量(千克)去年 150 40今年 x(2)已知油菜种植成本为 200 元/亩,菜油收购价为 6 元/千克。试比较这个村去今两年种植油菜的纯收入。(十四) 、等积变形问题等积变形是以形状改变而体积不变为前提。常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变圆柱体的体积公式 V=底面积高Sh 2rh长方体的体积 V长宽高abc1、一个长方形的周长为 26,这个长方形的长减少 1,宽增加 2,就可成为一个正方形,则原长方形的长和

37、宽各为多厘米?2、在一个底面直径为 30 厘米,高为 8 厘米的圆锥体容器中倒满水,然后将水倒入一个底面直径为 10 厘米的圆柱体空容器内,圆柱体容器内的水有多高?223现有直径为 0.8 米的圆柱形钢坯 30 米,可足够锻造直径为 0.4 米,长为 3 米的圆柱形机轴多少根?(十五) 、方案选择问题例题分析:某家电商场计划用 9 万元从生产厂家购进 50 台电视机已知该厂家生产 3种不同型号的电视机,出厂价分别为 A 种每台 1500 元,B 种每台 2100 元,C 种每台 2500 元(1)若家电商场同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的进货方案(2

38、)若商场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利 200 元,销售一台 C 种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 1、某通讯公司推出了甲、乙两种市内移动通讯业务。甲种使用者需每月缴纳 15 元月租费,然后每通话 1 分钟,再付花费 0.3 元;乙种使用者不缴纳月租费,每通话 1 分钟,付花费0.6 元。根据一个月的通话时间,选择哪种方式更优惠?232、在“五一”黄金周期间,小明小亮等同学随家人一同到将狼山游玩,下面是购买门票是,小明与他爸爸的对话:爸爸说:“大人总门票每张35元,学生门票五折优惠,

39、我们总共有12人,共要350元。 ”小敏说:“爸爸,等一下,让我算一算,换一种方式买票是否更省钱。” 票价单:成人:35元一张。 学生:按成人 5折优惠,团体票:16人以上(含16人)按成人票6折优惠。问题:(1)小明他们一共去了几个成人?几个学生?(2)小明算一算,用那种方式买票更省钱?并说明理由3、某班去商店为体育比赛优胜者买奖品,书包每个定价30元,文具盒每个定价5元,商店实行两种优惠方案:买一个书包赠送一个文具盒;按总价的九折付款,若该班需购书包8个,设需购文具盒x个(x8) ,付款共y元 (1)用含x的式子分别表示这两种优惠方案的付款; (2)若购文具盒30个,应选哪种优惠方案?付多

40、少钱?(3)你认为应选择哪种方案更合算?4、某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴 15 元月租费,然后每通话 1 分钟, 再付话费 0.3 元; 乙种使用者不缴月租费, 每通话 1 分钟, 付话费 0.6元。若一个月内通话时间为 x 分钟, 甲、乙两种的费用分别为 y1和 y2元。(1)、试求一个人要打电话 30 分钟,他应该选择那种通信业务?(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?245、某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的 6 折优惠”(即

41、按票的 60%收费)。现在全票价为 240 元,学生数为 5 人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?6、小明想在两种灯中选购一种,其中一种是 10 瓦(即 0.01 千瓦)的节能灯,售价 50 元,另一种是 100 瓦(即 0.1 千瓦)的白炽灯,售价 5 元,两种灯的照明效果一样,使用寿命也相同(3000 小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费 0.5 元/千瓦时 (1)照明时间 500 小时选哪一种灯省钱?(2)照明时间 1500 小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?7. 清风乐园门票价格如下表所示:25某校七年

42、级、两个班共104人去清风乐园春游,其中班人数较少,不到50人,班人数较多,超过50人,经估算若两班都以班为单位分别购票,则一共应付1240元(1)请算出两个班各有多少名学生(2)想一想:你认为他们如何购票比较合算?(3)假如班先到达乐园,想要单独购票,你能帮他们想出一个比较合算的购票方案吗?9某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为 1000 元,经粗加工后销售,每吨利润可达 4500 元,经精加工后销售,每吨利润涨至 7500 元,当地一家公司收购这种蔬菜 140 吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工 16吨,如果进行精加工,每天可加工 6 吨,但

43、两种加工方式不能同时进行,受季度等条件限制,公司必须在 15 天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好 15 天完成你认为哪种方案获利最多?为什么?10、某市剧院举办大型文艺演出,其门票价格为:一等席 300 元人,二等席 200 元人,三等席 150 元人,某公司组织员工 36 人去观看,计划用 5850 元购买 2 种门票,请你帮助公26司设计可能的购票方案。11、某农户 2000 年承包荒山若干公顷,投资 78

44、00 元改造后,种果树 2000 棵,今年水果总产量为 18000kg,此水果在市场上每千克售 a 元,在果园每千克售 b 元(ba),该农户将水果运到市场出售,平均每天出售 1000kg,需 8 人帮助,每人每天付工资 25 元,汽车运费及其它各项税费平均每天 100 元。分别用 a、b 表示用两种方式出售水果的收入。若 a=1.3 元,b=1.1 元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?(十六)浓度问题1、有含盐 20%的盐水 5 千克,要配制成含盐 8%的盐水,需加水_千克。2、某化工厂现有浓度为 15%的稀硫酸 175 千克,要把它配成浓

45、度为 25%的硫酸,需要加入浓度为 50的硫酸多少千克?3、今需将浓度为 80和 15的两种农药配制成浓度为 20的农药 4 千克,问两种农药应27各取多少千克?4、甲、乙两块合金,含银和铜的比分别是甲为 4:3,乙为 7:9,今从两块合金中各取多少千克,能得到含银 84 千克、含铜 82 千克的新合金?5、有甲、乙两种铜和银的合金,甲种合金含银 25%,乙种合金含银 37.5%,现在要熔制含银 30%的合金 100 千克,两种合金应各取多少?(十七)古典数学:1、100 个和尚 100 个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。282、有若干只鸡和兔子,它们共有

46、88 个头,244 只脚,鸡和兔各有多少只?(十八)市场经济问题练习 1:某高校共有 5 个大餐厅和 2 个小餐厅经过测试:同时开放 1 个大餐厅、2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅、1 个小餐厅,可供 2280 名学生就餐(1)求 1 个大餐厅、1 个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的 5300 名学生就餐?请说明理由练习 2:工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?练习 3:(20

47、06益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有 100 元,请帮我安排买 10 支钢笔和 15 本笔记本.29售货员:好,每支钢笔比每本笔记本贵 2 元,退你 5 元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?练习 4:某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦则超过部分按基本电价的 70%收费(1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a(2)若该用户九月份的平均电费为 0.36 元,则九月份共用电多少千瓦?应交电费是多少元?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报