1、纳米涂料工艺手册目录第一章 纳米功能涂料的基本概况1.1 概述1.2 定义和特点1.2.1 定义1.2.2 特点1.3 基本原理1.4 纳米涂料分类1.5 纳米涂料组成第二章 纳米涂料的历史第三章 纳米涂料的应用第四章 纳米功能涂料的性能第五章 纳米功能涂料的发展第一章纳米功能涂料的基本概况1.1 概述纳米功能涂料是一种能提供不同特殊功能的涂料。采用不同的施工工艺涂覆在干净的工件表面,形成连续,均匀的,结合牢固的固体膜,具有一定强度和不同功能,这样形成的膜通称纳米漆膜或纳米涂层。1.2 定义和特点1.2.1 定义广义上讲,纳米涂料是指含有纳米材料的的涂料统称纳米涂料。纳米涂料是指至少含有一相尺
2、寸在 1100nm,而且性能得到显著提高的涂料。纳米功能涂料分为两种:纳米涂料和纳米复合涂料。纳米涂料是指全部由纳米材料组成的一种涂覆材料。复合纳米涂料是指至少有一相是纳米材料组成的复合涂料。随着涂料应用的不断增加,对涂料的质量提出了更高的要求。在生产和使用过程中造成的对环境污染也越来越引起人们的重视。今年来,涂料的新品种、新技术不断得到了发展,特别是无溶剂、水性涂料正在逐步取代溶剂涂料,并在特殊功能上要求越来越高。纳米涂料能提供特殊的功能,其应用越来越广泛。且环保,安全,满足现代涂料技术要求。1.2.2 特点纳米涂料因有纳米晶相粒子,具有纳米离子的特性,能够提供不同的特色功能。(1)、 纳米
3、材料的表面效应纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。粒径在 10nm 以下,将迅速增加表面原子的比例。当粒径降到 1nm 时,表面原子数比例达到约 90%以上,原子几乎全部集中到纳米粒子的表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。(2)、纳米材料的体积效应由于纳米粒子体积极小,所包含的原子数很少,相应的质量极小。因此,许多现象就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象通常称之为体积效应。其中有名的久保理论就是体积效应的典型例
4、子。久保理论是针对金属纳米粒子费米面附近电子能级状态分布而提出的。久保把金属纳米粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子态,并进一步假设它们的能级为准粒子态的不连续能级,并认为相邻电子能级间距 和金属纳米粒子的直径 d 的关系为:=4EF/3N V-1 1/d3 其中 N为一个金属纳米粒子的总导电电子数;V 为纳米粒子的体积; EF 为费米能级。随着纳米粒子的直径减小,能级间隔增大,电子移动困难,电阻率增大,从而使能隙变宽,金属导体将变为绝缘体。(3)、 纳米材料的量子尺寸效应当纳米粒子的尺寸下降到某一值时,金属粒子费米面附近电子能级由准连续变为离散能级;并且纳米半导体微粒存在不
5、连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级,使得能隙变宽的现象,被称为纳米材料的量子尺寸效应。在纳米粒子中处于分立的量子化能级中的电子的波动性带来了纳米粒子的一系列特殊性质,如高的光学非线性,特异的催化和光催化性质等。当纳米粒子的尺寸与光波波长,德布罗意波长,超导态的相干长度或与磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近的原子密度减小,导致声、光、电、磁、热力学等特性出现异常。如光吸收显著增加,超导相向正常相转变,金属熔点降低,增强微波吸收等。利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收边的位移,制造具有一定频宽的
6、微波吸收纳米材料,用于电磁波屏蔽、隐型飞机等。由于纳米粒子细化,晶界数量大幅度的增加,可使材料的强度、韧性和超塑性大为提高。其结构颗粒对光,机械应力和电的反应完全不同于微米或毫米级的结构颗粒,使得纳米材料在宏观上显示出许多奇妙的特性,例如:纳米相铜强度比普通铜高 5 倍;纳米相陶瓷是摔不碎的,这与大颗粒组成的普通陶瓷完全不一样。纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期未能解决的问题开拓了新的途径。因而大大改变了涂料的特性,提供了不同的功能。粒度进入纳米尺度,材料表面活性中心的增
7、多可提高其化学催化和光催化的反应能力,在紫外线和氧气的作用下给予涂层自清洁能力;表面活性中心与成膜物质的官能团可发生次化学键结合,大大增加涂层的刚性和强度,从而改进涂层的耐划伤性;高表面能的纳米材料表面经过改性可以获得同时憎水和憎油的特性,用于内外墙涂料可以显著提高涂层的抗污性并可提高耐候性;某些粒径小于 100nm 的纳米材料,对、 Y 射线具有吸收和散射作用,可提高涂层防辐射的能力,在内外墙涂料中可起到防氡气的作用;将纳米材料用在底漆中,可以增加底漆与基材的附着力,提高机械强度,且纳米级的颜料与底漆的强作用力及填充效果,有助于改进底漆一涂层的界面结合;纳米材料在面漆中可起到表面填充和光洁作
8、用,提高面漆的光泽,减少阻力;纳米二氧化硅添加到外墙涂料中可提高涂料的耐擦洗性;纳米二氧化钛添加到建筑外墙涂料中,可将乳胶漆的耐候性提高到一个新的等级,同时还使乳胶漆的耐老化性能有很大的提高;纳米氧化锌添加到外墙涂料中,能使涂层具有屏蔽紫外线、吸收红外线以及杀菌防毒作用。1.3 纳米涂料的基本作用原理1.3.1 黏结力和内聚力生产和使用纳米涂料的目的是为了得到满足要求的涂膜,涂膜的形成是依靠涂料中成膜物所产生的对基材的黏结力和涂料组成内部分子间的内聚力来完成的。黏结力是涂膜和基材之间的结合力,是外向的力,涂料成膜物对基材的黏结力越强,漆膜附着力越好。内聚力是涂料内部分子的集结力,是内向的力,内
9、聚力越小,漆膜层间易断裂,漆膜易老化,内聚力越大,漆膜黏结力差,伸缩小或聚合物不易溶解,使涂料的各组分分散性能不好,流平性差。1.3.2 成膜机理纳米涂料的成膜机理和普通涂料的成膜机理基本相似。物理固化成膜和化学固化成膜。纳米涂料的成膜既可以是单一成膜机理,也可以是两种机理结合成膜。(1)物理成膜物理固化成膜是指涂膜的形成仅仅依靠涂料中分散介质的挥发,成膜粒子在一定条件下互相凝聚(靠近、接触、挤压而聚集)而获得固化成膜的过程,没有发生化学反应,无物质的转化。(2)化学成膜化学固化成膜是指涂膜的形成低分子化合物与基材金属离子、氧气、固化剂及自身官能团通过化学反应生成网状的不溶性物质的过程。1.4
10、 纳米涂料的分类前面已经讲过,纳米功能涂料分为两种:纳米涂料和复合纳米涂料。按对环境功能作用或性能分为:特种功能涂料、特种表面性能涂料、特种装饰涂料。1.4.1 特种功能涂料(1)电功能涂料例如导电涂料、绝缘涂料、电场缓和涂料、电子曲线涂料、防静电涂料、印刷电路涂料、集成电路涂料、电波吸收涂料等。(2)磁功能涂料例如磁性涂料。(3)光功能涂料例如发光涂料、荧光涂料、蓄光涂料、液晶显示涂料、防伪涂料。选波吸收涂料、道路标志涂料、红外线辐射涂料等。(4)声波涂料例如阻尼涂料。(5)机械物理功能例如润滑涂料、防滑涂料、膨胀涂料、应变涂料、可剥涂料、防结露涂料、防冰雪涂料、高弹性涂料等(6)热功能耐热
11、涂料、放火涂料、示温涂料、热反射涂料、热吸收涂料、耐低温涂料、航空热控涂料等。(7)生物功能例如防污涂料、防霉涂料、杀虫涂料等。(8)放辐射功能例如防放射性污染涂料、防射线涂料、耐射线涂料。(9)防腐蚀功能例如防锈涂料、防腐蚀涂料、耐酸碱涂料,耐药品涂料、耐沸水涂料等。1.4.2 特种表面性能涂料例如疏水或疏油涂料、自清洁涂料、可剥涂料、漆膜保护剂、防污涂料(耐指纹)。1.4.3 特种装饰涂料例如多彩内墙涂料、耐候外墙涂料。1.5 纳米涂料的组成纳米功能涂料一般包含成膜物质、颜料、溶剂、助剂四个部分,它们分别承担着涂料中固附成膜; 着色颜料;成膜基料分散;消泡流平,润湿耐久等作用。纳米涂料中成
12、膜物质全部是纳米材料,复合纳米涂料中一般加入了纳米颜料,由纳米颜料赋予其纳米特性。1.5.1 纳米涂料纳米涂料一般由纳米级聚合物、溶剂、助剂组成,呈无色透明水状,成膜后亦无色透明,根据需要,也可以加入颜料呈现不同色彩。纳米涂料溶剂为酒精和水,没有有毒溶剂,比如二甲苯、甲苯、甲醛等。纳米涂料成膜厚度一般在 110um。涂料成膜后,硬度较高,在不锈钢表面最高可至6H 以上。纳米涂料的附着力普遍很高,一般在 ISO 标准 0 级。纳米涂料的主要成分为无机材料,所以耐候性、耐酸碱性、耐温性能和耐温度突变性能都非常强。1.5.2 纳米复合涂料纳米复合涂料与一般涂料的组成结构基本一致,只是成膜物含有一相纳
13、米晶向材料,这里不做详细说明。第二章 纳米科学的发展历史1.纳米科学发展简史 1959 年,著名物理学家、诺贝尔奖获得者理查德费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。1974 年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。70 年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的段制备纳米颗粒,开始了人工合成纳米材料。1982 年,研究纳米的重要工具-扫描隧道显微镜被发明。1989 年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材
14、料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。1990 年 7 月,第一届国际纳米科学技术会议在美国巴尔的摩举行。1991 年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。1992 年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。1993 年,继 1989 年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字。1990 年美国国际商用机器公司在镍表面用 36 个氙原子排出“IBM”之后,中科北京真空物理实验室操纵原子成功写出“中国”二字。1997 年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在 20 年后研制成功速度
15、和存储容量比现有计算机提高成千上万倍的量子计算机。1999 年,巴西和美国科学家发明了世界上最小的“秤”,可称量十亿分之一克的物体,相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”。2000 年 4 月,美国能源部桑地亚国家实验室运用激光微细加工技术研制出智能手术刀,该手术刀可以每秒扫描 10 万个癌细胞,并将细胞所包含的蛋白质信息输入计算机进行分析判断。 2001 年纽约斯隆- 凯特林癌症研究中心的戴维. 沙因贝格尔博士报道了把放射性同位素锕-225 的一些原子装入一个形状像圆环的微型药丸中,制造了一种消灭癌细胞的靶向药物。2纳米科学及技术的发展 普遍同意的观点:纳
16、米技术发展可能经历五个阶段 : 第一阶段的发展重点是要准确地控制原子数量在 100 个以下的纳米结构物质。这需要使用计算机设计制造技术和现有工厂的设备和超精密电子装置。第二个阶段是生产纳米结构物质。在这个阶段,纳米结构物质和纳米复合材料的制造将达到实用化水平。其中包括从有机碳酸钙中制取的有机纳米材料,其强度将达到无机单晶材料的 3000 倍。 第三个阶段,大量制造复杂的纳米结构物质将成为可能。这要求有高 级的计算机设计制造系统、目标设计技术、计算机模拟技术和组装技术等。第四个阶段中实现纳米计算机。第五阶段里,科学家们将研制出能够制造动力源与程序自律化的元件和装置,市场规模将高达 6 万亿美元。
17、 第三章 纳米功能涂料的应用1、 水 性 环 氧 防 腐 蚀 纳 米 涂 料 的 应 用高分子化学与物理的专业的张玉芳以自制的水性环氧乳液制备水性环氧涂平科,并对其进行性能测试,将测试结果与市售的水性环氧涂料进行比较,得出本实验制备的水性环氧涂料各项性能均达到甚至超过市售涂料水。在此基础上,以自制的水性环氧乳液作为成膜基料,通过超声分散,将表面接枝 NA 酸酐的 CNTS 分散到水性环氧涂料中,配制水性环氧防腐蚀纳米涂料,研究水性环氧防腐涂料的性能,考察碳纳米管的加入对涂料防腐蚀性能的影响。结果显示:碳纳米管能够均匀分散在水性环氧乳液中,且碳纳米管的加入能够提高涂膜的各项性能。对比不同含量 C
18、NTS/水性环氧涂料防腐蚀性能测试结果可以看出:CNTS 含量为 3的涂膜各项性能最好,CNTS 含量为 1的涂膜比不加 CNTS 的膜防腐蚀性能要好,而加入 5时,涂膜耐介质性能开始下降,但耐盐雾性能逐渐增强。2、 纳 米 材 料 在 汽 车 节 能 减 排 方 面 的 应 用纳 米 涂 料 在 汽 车 上 的 应 用 汽 车 车 身 表 面 的 装 饰 和 保 护 需 要 涂 料 , 而 涂 层 不 但 要 具有较高的装饰性,还要具备优良的耐久性,如抵抗紫外线、水分、化学物质及酸雨 的 侵 蚀 和抗 冲 击 性 能 是 不 可 缺 少 的 。汽 车 上 常 用 的 有 抗 冲 击 、 抗
19、紫 外 线 、 自 动 变 色 、 抗 菌 除 臭 、 防 静 电 等 纳 米 涂 料 。 如 在涂 料 中 加 入 纳 米 AI2O3、 SiO2纳 米 等 微 粒,可以改善涂层的表面强度和耐磨性,从而提高汽车车体的抗冲击(溅石等)能力 。 将 纳 米 TiO2粉 按 一 定 比 例 加 入 到 涂 料 中 , 涂 层就 会 产 生 遮 蔽 紫 外 线 的 功 能 。 在 制 备 有 机 玻 璃 等 防 护 材 料 时 加 入 具 有 透 明 性 和 吸 收 紫外 线 特 性 的 SiO2、M gO等纳 米 微 粒 , 可 减 弱 紫 外 线 的 损 伤 程 度 , 使 其 具 有 更 好
20、的 耐 久 性 和 透明 性 , 减 缓 有 机 玻 璃 的 老 化 。 将 TiO2添 加 在 汽 车 金 属 闪 光 面 漆 中 , 能 使 涂 层 产 生 丰 富 而变 幻 莫 测 的 色 彩 效 果 。 利 用 ZnO/SiO2作 为 消 臭 剂 生 产 的 除 臭 纤 维 , 用 于 汽 车 内 饰 纺 织 品 ,可 起 到 吸 收 臭 气 、 净 化 车 内 空 气 的 作 用 。 利 用 纳 米 氧 化 物 Fe3O4等 可 制 成 多 种 颜 色 的 静 电 屏蔽 涂 料 。 日 本 用 无 裂 纹 抗 静 电 涂 料 开 发 了 一 种 车 用 塑 料 , 美 国 也 用Si
21、O2、A I2O3、C r2O3与 树 脂 复 合 制 成 了 静 电 屏 蔽 涂 。3、疏水涂料的应用随着人们对生活质量要求的不断提高以及环保和节能意识的不断增强,具有自清洁功能的表面得到了迅速的发展。自清洁表面是指表面的污染物或灰尘在重力或雨水、风力等外力作用下能够自动脱落或被降解的一种表面。超疏水自清洁表面由于其独特的性能,在现实中的应用非常广泛,如建筑物窗玻璃、运输工具窗玻璃、挡风玻璃、后视镜、浴室镜子、眼镜镜片、测量仪器的玻璃罩等,当潮湿空气冷凝时,水滴在表面滚落,使表面维持高度的透明性,给车辆的安全行驶及工作效率的提高带来了极大的便利,具有广阔的应用前景。然后,我们将超疏水材料的应
22、用拓展到了油水分离领域中,利用无电位沉积方法和溶液浸泡方法制备了两种同时具有超疏水和超亲油性质的铜网,相对于传统的分液漏斗而言,我们所制备的铜网分离效率更高,仪器更为简单。最后,我们利用原电池的方法制备了超疏水金属材料并将其应用到防腐蚀领域中,这样我们就将抗腐蚀材料的制备和电能的产生有机地结合在了一起,具有重要的理论意义和实际价值。 通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,可以将材料进行如下分类: 当接触角 小于 90 时,这种材料是亲水材料;如果水滴在材料表面的接触角小于 5,那么这种材料是超亲水材料;当材料表面接触角大于 90 时,我们认为这
23、种材料是疏水材料;如果材料的表面接触角大于 150,那么这种材料是超疏水材料,水滴不能在其表面稳定停留,极易滑落。超疏水涂料必须同时具备三方面的特性:具有低表面能的疏水性表面;合适的表面粗糙度;低滑动角。4、金属保护的应用第四章 纳米功能涂料的性能疏水性防护性第五章 纳米功能涂料的发展1、世界各国对纳米技术的发展现状 美国最早成立了纳米科技研究中心,开展了预研究,IBM 和德克萨斯仪器公司都是积极参与者。在加州大学伯克利分校、圣巴巴拉分校、斯坦福大学、加州理工学院等十多所著名大学、研究机构都在重点发展纳米科技研究。1988 年美国能源部召集专题研讨会“团簇及团簇组装材料相关的研究战略”,表现出
24、对这一前沿领域的高度重视。1989 年美国 NMAR-NRC 又召集专题研讨会“具有亚微米尺度材料的研究战略”;1991 年以后,美国正式把纳米技术列入国家关键技术的第 8 项和 2005 年的战略技术,报告提出:微米级和米级制造涉及显微量级(微米)和原子量级(纳米)的材料及器件的制造和使用,对先进的纳米级技术的研究可能导致纳米机械装置和传感器的产生。纳米技术的发展,可能使许多领域产生突破性进展;1992 年美国启动 “总统倡导的材料 R&D 项目” ,旨在促进超细及纳米材料的商业化;1993年美国再次启动联邦先进材料及过程项目推动该领域技术的商业化; 日本也早在 80 年代初就以巨资投入纳米
25、技术研究,制定了庞大的国家计划,从 1991 年起实施一项为期 10 年、耗资 2.25 亿美元的纳米技术研究开发计划。日本制订的关于先进技术开发研究规划中有 12 个项目与纳米技术。德国在 1993 年提出今后 10 年重点发展的 9 个关键技术领域,纳米技术就涉及其中 4 个领域,德国政府每年投入约 5000 万美元,用于基础及应用开发。英国也制订了纳米技术研究计划,在机械、光学、电子学等领域遴选了 8 个项目进行研究。 我国在纳米技术领域的研究也已起步。中国科学院、中国真空学会分别召开研讨会讨论我国纳米科技的发展战略,纳米材料的研制已被国家列入攀登计划、“863”计划、攻关计划、火炬计划
26、等,纳米加工和 DNA 结构的 STM 研究也已被列为中科院八五重大基础研究项目。我国已有了自己的纳米技术产品,建立了十多条纳米材料和技术的生产线。 2、纳米涂料的发展经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪 4 大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米
27、机器人、集成生物化学传感器等将被研究制造出来。而在涂料应用的纳米材料的开发也越来越重视。 2.1 纳米涂料展望(1)研究制备出更多的、稳定性更好的纳米材料,以便使其应用于涂料中能更充分的发挥其功能。 (2)利用纳米材料的奇异特性研发出多种类型的功能性 (3 研发出更多的应用于高科技领域与国防军事部门的涂料,充分发挥纳米材料的功能。2.2 纳米涂料的未来(1)进一步研究物质在纳米尺度上表现出的物理、化学和生物特性,单分子的特性和相互作用。 (2)以原子、分子为起点,设计和构筑新的纳米结构、材料和器件,提供科学基础和理论准备。(3)加强对纳米结构新的测试和表征方法的研究和探索,加深对纳米科技理论和
28、方法的理解。3 纳米材料的未来发展 有人曾经预测在 21 世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从 2000 年启动了国家纳米计划,国际纳米结构材料会议自 1992 年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪 70 年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21 世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在 21 世纪实现经济腾飞奠定坚实的基础