1、 2009 年 第 54 卷 第 23 期 : 35903604 uS S vSCIENCE IN CHINA PRESS T : , 0 , Bl , . , 3 . SY , 2009, 54: 35903604 Lin D H, Ji J, Tian X L, et al. Environmental behavior and toxicity of engineered nanomaterials (in Chinese). Chinese Sci Bull (Chinese Ver), 2009, 54: 35903604, doi: 10.1360/972009-2075 5
2、:, #r , 3 *, 0, Bl , , , , , Xing Baoshan *v S“ , s 310028; Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003, USA; S S , 100012; SZv S , 266100 *“ , E-mail: bxpssci.umass.edu; 2009-10-09 l , 2009-11-20 s SE$?Z9 (I| : 2008CB418204)aSE1 S ( | : 20737002, 4
3、0873072, 40973065)a 81 S (I| : Z507093) “ , United States Department of Agriculture (USDA) Hatch Program (MAS 00978) K1 “ , S/ ?Z , 7 S1i , 3 . , bo V ? 3 , s , i ; 8 , a # , a 0%a% )a 3 3a d 3 3r , - , 1 ; K , Z , 3 5Z_ . 1oM , R , S 20 W 80 M ?Z S , Sa 3 Si 21 WK -o v/ S 51. , y , , 7 HaaQa; , 7?
4、P+ MWCNT60MWCNT20MWCNT100MWCNT1037. “ , , ?9 s T a V vl V HqY (m 2). , T eV ?1y B , T , ?z (m 2-b). yN , ; V CCC , 8W v i . o8 , CCC 0N(Z)W1“B Schulze-Hardy? p38, CCC (1/Z)6, (2) V , 0 z1 v , 5 CCC9 Schulze-Hardy? p37,39, , 5A 0 ?66; C60x8C60v ) j )Kl iS 0.53.0 mg/L, v )rTz j )68; C60 , A!ZE1 , THF/
5、nC60( _Q )LC50( i ) 0.6 mg/L 69 0.8 mg/L70, 7aqu/nC60(B 2 C60) LC509F 7.9 mg/L69 35 mg/L70; 0.2 mg/L C60 V P 3 , 9F q71. V , C60l A . Sayes72l 5 = , 1 ? H C60V % , 3 k AT , C60l k l . Baker 739?C (10 d) (2.22 2.35 mg/m3)l 3Ar . “ - , n C60rM1 . (2) CNTs 3r . CNTs ? % , yN , $T08 2009 年 12 月 第 54 卷 第
6、 23 期 3596 CuOTiO2, 72 h IC50sY 0.04 mg (Zn)/L, 11.55 mg (Cu)/L 35.9 mg (Ti)/L. # , 9 , , (80 nm) 48 h LC50 1.5 mg/L103; , (30, 60 100 nm o R ) LC50 221361 mg/L, 7AM , 60 nm v 8 T R LC50 115 mg/L, A o R , . 0 LC50(221 mg/L)104. , 3 39 4 ( )s 0 , ( , , ( T 3 0 , , V4 07( 3 . , , %141% )142 1 3 0 . Gr
7、iffitt 103 0 , D , LC50 i/ , , 3 0 DV 16%. Brunner143| , s , V , %1 3 0 , 7 , %5 V ? 3 ROS. T , # , H , s k 34d1 , s k 3 0d , , 6 , ?Ct 0 ? % , i 3 AB“r . , vs ( L i = , I ny Y , L =B 3kT ?V L 3 , HqY , , V7Yr147. E9 MQT . Nyberg 148| C60 ) C , ?C Y C ) . Tong 149| C60(11000 mg/kg) r , 9?C r 3 a ?AY
8、 . Johansen150 5?C , C60(550 mg/kg) r Yr 3 3 , A *t y 3 ) . Liu 151?C , , , C60aa SWCNTs MWCNTs, J$T , ?Y 3 , T SWCNTs H , t , TV 7K ?i . 4 Z V 10 M , SE , 3 rX |Bt M , i 5 . , , ba b? p C , 4 Sr n . , 1F , / 3Va PV#l )V , b+ , F y , / Sa bS , , S/r B?Z . V98 A , - , d C , $ 3“ , y VZE , w , 8arav a
9、 3a aV B t , # , 3 V # J %M Z S . “ - , S , 3 XB , ) 9r Bt M , Bt , 3 ROS 7 38 . L | ?a L !9a LHq , LTgM , 9Bt dp . # , 3 0 D C . , 3 #r , y 3599 PZE , Ay B*Ma S , kSZE , , Va 3 |a ZEarS . N , 1 , 4 $r( -1 = ) H , 11 , 4 # ra 38 =B tL. , PTFL Lf ; 91F , V ? 3 # 3 r . ID 1 白春礼. 纳米科技及其发展前景. 科学通报, 2001
10、, 46: 89 92 2 Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufactured nanomaterials. Environ Sci Technol, 2006, 40: 43364345 3 Service R F. Nanomaterials show signs of toxicity. Science, 2003, 300: 243. 4 Maynard A D. Safe handling of nanotechnology. Nature, 2006, 444: 267 269
11、5 USEPA. Nanotechnology white paper-external review draft. http:/www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_ external_review_draft_12-02-2005.pdf 6 Nanotechnology Research Co-ordination Group Secretariat, 2005. Characterising the potential risks posed by engineered nanoparticles: A first UK
12、 government research report. http: /www.defra.gov.uk/environment/nanotech/research/pdf/nanoparticles-rishreport.pdf 7 汪冰, 丰伟悦, 赵宇亮, 等. 纳米材料生物效应及其毒理学研究进展. 中国科学 B辑: 化学, 2005, 35: 1 10 8 Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability and
13、effects. Environ Toxicol Chem, 2008, 27: 1825 1851 9 Zhang Y, Chen Y S, Westerhoff P, et al. Stability of commercial metal oxide nanoparticles in water. Water Res, 2008, 42: 2204 2212 10 Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ
14、 Sci Technol, 2008, 42: 4133 4139 11 Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ Sci Technol, 2009, 43: 8113 8118 12 Kaegi R, Ulrich A, Sinnet B, et al. Synthetic TiO2nanoparticle emission from exterior facades into the aquatic environment. Environ P
15、ollut, 2008, 156: 233 239 13 Olapiriyakul S, Caudill R J. Thermodynamic analysis to assess the environmental impacts of end-of-life recovery processing for nanotechnology products. Environ SciTechnol, 2009, 43: 8140 8146 14 Khler A R, Som C, Helland A, et al. Studying the potential release of carbon
16、 nanotubes throughout the application life cycle. J Clean Prod, 2008, 16: 927 937 15 Biswas P, Wu C Y. Critical review: Nanoparticles and the environment. J Air Wast Manage Assoc, 2005, 55: 708 746 16 Buzea C, Blandino I I P, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerp
17、hases, 2007, 2: MR17 MR71 17 Schrick B, Hydutsky B W, Blough J L, et al. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater, 2004, 16: 2187 2193 18 Kanel S R, Nepal D, Manning B, et al. Transport of surface-modified iron nanoparticle in porous media and applicat
18、ion to arsenic(III) remediation. J Nanopart Res, 2007, 9: 725 735 19 Saleh N, Kim H-J, Phenrat T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0nanoparticles in wa-ter-saturated sand columns. Environ Sci Technol, 2008, 42: 3349 3355 20 Zhan J J, Zheng T H, Piringer
19、 G, et al. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environ Sci Technol, 2008, 42: 8871 8876 21 Wang Y G, Li Y S, Fortner J D, et al. Transport and retention of nanoscale C60aggregates in water-saturated porous
20、media. Environ Sci Technol, 2008, 42: 3588 3594 22 Li Y S, Wang Y G, Pennell K D, et al. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ Sci Technol, 2008, 42: 7174 7180 23 Lecoanet H F, Bottero J Y, Wiesner M R. L
21、aboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol, 2004, 38: 5164 5169 24 Jaisi D P, Saleh N B, Blake R E, et al. Transport of single-walled carbon nanotubes in porous media: Filtration mechanisms and re-versibility. Environ Sci Technol, 2008, 42: 8317 8323 2
22、5 Lecoanet H, Wiesner M R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol, 2004, 38: 4377 4382 26 Fang J, Shan X Q, Wen B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil 2009 年 12 月 第 54
23、卷 第 23 期 3600 columns. Environ Pollut, 2009, 157: 1101 1109 27 Doshi R, Braida W, Christodoulatos C, et al. Nano-aluminum: Transport through sand columns and environmental effects on plants and soil communities. Environ Res, 2008, 106: 296 303 28 Pelley A J, Tuffenkji N. Effect of particle size and
24、natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Colloid Interf Sci, 2008, 321: 74 83 29 Yang G C C, Tu H C, Hung C H. Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol, 2007, 58: 166 172 30
25、 Liu X Y, OCarroll D M, Petersen E J, et al. Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol, 2009, 43: 8153 8158 31 Hilding J, Grulke E A, Zhang Z G, et al. Dispersion of carbon nanotubes in liquids. J Disper Sci Technol, 2003, 24: 1 41 32 Hansen S F, Michelson E S, Ka
26、mper A, et al. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 2008, 17: 438 447 33 Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol, 2007, 41: 179 184 34 Ch
27、en K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and diva-lent electrolyte solutions. J Colloid Interf Sci, 2007, 309: 126 134 35 Lin D H, Xing B S. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions.
28、 Environ Sci Technol, 2008, 42: 5917 5923 36 Chen K L, Mylon S E, Elimelech M. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir, 2007, 23: 5920 5928 37 Lin D H, Liu N, Yang K, et al. The effect of ionic st
29、rength and pH on the stability of tannic acid-facilitated carbon nanotube suspen-sions. Carbon, 2009, 47: 2875 2882 38 Elimelech M, Gregory J, Jia X, et al. Particle deposition and aggregation: Measurement, modeling and simulation. Butter-worth-Heinemann, Woburn, MA, 1995 39 Sano M, Okamura M, Shink
30、ai S. Colloidal nature of single-walled carbon nanotubes in electrolyte solution: The Schulze-Hardy rule. Langmuir, 2001, 17: 7172 7173 40 Terashima M, Nagao S. Solubilization of 60fullerene in water by aquatic humic substances. Chem Lett, 2007, 36: 302 303 41 Ills E, Tombcz E. The effect of humic a
31、cid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparti-cles. J Colloid Interf Sci, 2006, 295: 115 123 42 Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ Sci
32、 Technol, 2008, 42: 4416 4421 43 Yang K, Lin D H, Xing B S. Interactions of humic acid with nanosized inorganic oxides. Langmuir, 2009, 25: 3571 3576 44 Ghosh S, Mashayekhi H, Pan B, et al. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic mat-ter. Langmuir, 20
33、08, 24: 12385 12391 45 Chappell M A, George A J, Dontsova K M, et al. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environ Pollut, 2009, 157: 1081 1087 46 Lu C S, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanot
34、ubes. Water Res, 2005, 39: 1183 1189 47 Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc, 2001, 123: 2058 48 Chin C J M, Shih L C, Tsai H J, et al. Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon, 2007, 45: 1254 1260 49 Chen W, Duan L, Zhu D
35、 Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol, 2007, 41: 8295 8300 50 Lin D H, Xing B S. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol, 2008, 42: 7254 7259 51 Yang K
36、, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol, 2006, 40: 1855 1861 52 Pan B, Lin D H, Mashayekhi H, et al. Adsorption and hysteresis of bisphenol A and 17-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol, 2008, 42: 5480
37、 5485 53 Wang Z Y, Zhao J, Li F M, et al. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere, 2009, 77: 67 73 54 Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol, 2008, 42: 9005 9013 55 Yang K, Wu W H, Jing Q F, et al. Aqueous adsorption of aniline, phenol and their substitutes by multi-walled carbon nanotubes. En-viron Sci Technol, 2008, 42: 7931 7936 3601 56 Yang K, Xing B S. Sorption of phenanthrene by humic acid-coated