1、MATLAB与拉氏变换,syms m k c s=tf(s); G=1/(m*s2+c*s+k),计算时域函数的拉氏变换,syms t a y; y=laplace(exp(a*t),y =1/(s-a),syms t a y; y=laplace(exp(-a*t),y =1/(s+a),syms t y; y=laplace(exp(-2*t),y =1/(s+2),计算时域函数的拉氏变换,1/a*Beta(2,s/a),syms t y; y=laplace(sin(t)+2*cos(t),1/(s2+1)+2*s/(s2+1),syms t y; y=laplace(t*exp(-2*
2、t),1/(s+2)2,syms t a y; y=laplace(1-exp(-a*t),计算时域函数的拉氏变换,syms t y; y=laplace(t*cos(3*t)*cos(3*t)*cos(3*t),y =-2/3/(1/9*s2+1)/(1/9*s2+9)*(7/6+1/54*s2)+4/27*s2/(1/9*s2+1)2/(1/9*s2+9)*(7/6+1/54*s2)+4/27*s2/(1/9*s2+1)/(1/9*s2+9)2*(7/6+1/54*s2)-2/81*s2/(1/9*s2+1)/(1/9*s2+9),simplify(y) ans = (99*s4+3483
3、*s2-45927+s6)/(s2+9)2/(s2+81)2,计算时域函数的拉氏变换,syms t y; y=laplace(exp(-3*t)-exp(-5*t)/t),y =-log(s+3)+log(s+5),syms s F;F=ilaplace(-log(s+3)+log(s+5),计算时域函数的拉氏逆变换,1/(s2+1)+2*s/(s2+1),syms s F;F=ilaplace(1/(s+2)2),1/(s+2)2,syms s F;F=ilaplace(1/(s2+1)+2*s/(s2+1),计算时域函数的拉氏逆变换,syms s F;F=ilaplace(s-1)/(s+
4、1)*(s+2),-2*exp(-t)+3*exp(-2*t),计算时域函数的拉氏逆变换,syms s F;F=ilaplace(s2+3*s)/(s+1)*(s+2),Dirac(t)-2*exp(-t)+2*exp(-2*t),计算时域函数的拉氏逆变换,syms s F;F=ilaplace(s3+5*s2+9*s+7)/(s+1)*(s+2),Dirac(1,t)+2*Dirac(t)+2*exp(-t)-exp(-2*t),教材P192,例4-9,计算时域函数的拉氏逆变换,syms s F;F=ilaplace(s-2)/(s*(s+1)3),-2+3/2*t2*exp(-t)+2*t*exp(-t)+2*exp(-t),教材P194,例4-12,计算时域函数的拉氏逆变换,例10:,syms s F;F=ilaplace(s+2)/(s*(s+1)2),2-t*exp(-t)-2*exp(-t),