1、第五章位移法5-1求装配图如图所示桁架结构刚度矩阵K。各杆截面刚度均为EA。451 2 3 45 6 7 8a a a(a)(a)解:以铰点5为原心,建立如图所示的总体坐标系。建立元素刚度矩阵。杆元1-2,0=,1cos=,.,0sin al= 0000 0101 0000 010121 aEAK同理:877665433221 = KKKKKK杆元2-6,.,1sin,0cos,270 al= = 1010 0000 1010 000062 aEAK同理:847362 =KKK杆元1-6,.2,2sin,2cos,315 al= = 1111 1111 1111 1111261 aEAK同理:
2、837261 =KKK建立总体刚度矩阵,并进行删行删列:+ + + + + + + + +=240400002200 024200004022 422804000022 000242000040 004228000000 0000040000000000040400 240000024200 200000422804 022400000242 0220000042284aEAK6012 4 63 5 7a a a(b)解:以节点1为原点,建立如图所示的总体坐标系。建立元素刚度矩阵。杆元1-3,.0sin,1cos,0, = al= 0000 0101 0000 010131 aEAK同理:64
3、42755331 = KKKKK杆元1-2,.23sin,21cos,60, = al = 3333 3131 3333 3131421 aEAK同理:654321 =KKK杆元2-3,.23sin,21cos,300, = al = 3333 3131 3333 3131432 aEAK同理:765432 =KKK建立总体刚度矩阵K,并进行删行删列: =2304343000000 0234341010000 434323043430000 434102543410100004343230434300 014341025434101 000043432304343 00014341025434
4、10000004343230 0000014341023aEAK5-2平面桁架的形状及尺寸如图所示,各杆的截面刚度EA均相同,,45,30=用位移法求结点位移及各杆内力。Pl12 3 654(a)(a)解:以1为原点,建立如图所示的总体坐标系。结点力和结点位移列阵。 ., 665544332211 Tyxyxyxyxyxyx PPPPPPP= Tvuvuvuvuvuvu 66554,4332211 ,=建立元素刚度矩阵。杆元1-2,长度为.21sin,23cos,150,2 = l = 1313 3333 1313 3333821 lEAK杆元1-3,长度为,23sin,21cos,120,3
5、2 = l = 3333 3131 3333 31318331 lEAK杆元1-4,长度为.1sin,0cos,90, = l= 1010 0000 1010 000041 lEAK杆元1-5,长度为,23sin,21cos,60,32 = l = 3333 3131 3333 31318351 lEAK杆元1-6,长度为.21sin,23cos,30,2 = l = 1313 3333 1313 3333861 lEAK建立总体刚度矩阵,并删行删列后。 +=1136100 032680 vulEAP EAPlvu 3923.0,011 =PPPPP PPvlEAPvlEAP xy xx 14
6、711.036103,39230.036108 14711.03610338,08494.083 54 1312 =+=+= =+=对于结点2:300N1-22P2yP2xPPN Pxx 15470.132 030cos221 221 = =+ 对于结点3:N3-13P3yP3x60 PPNNPx 29423.036106,021 13133 =+=+ 对于结点4:P4yN4-14PPNy 39230.0414 =对于结点5:5P5yP5x60PPNx 29423.02515 =利用对称性得:PNN 09808.01216 = 09808.029423.039230.029423.009808
7、.06151413121 PNNNPl12 543(b)0.5P(b)解:以结点1为原点,建立如图所示的总体坐标系。结点力与结点位移列阵。 Tyxyxyxyxyx PPPPPP 5544332211 ,= Tvuvuvuvuvu 554,4332211 ,=建立元素刚度矩阵,杆元1-2,长度为.2sin,2cos,135,2 = l = 1111 1111 1111 1111221 lEAK杆元1-3,长度为.1sin,0cos,90, = l= 1010 0000 1010 000031 lEAK杆元1-4,长度为.23sin,21cos,60,32 = l = 3333 3131 3333
8、 31318341 lEAK杆元1-5,长度为.21sin,23cos,30,2 = l = 1313 3333 1313 3333851 lEAK建立总体刚度方程,并删行删列之后, + +=1111 8392121833 8332121833 vulEAPyx EAPlvEAPlu 544.0,665.0 11 = ( )( ) ( ) PPPP PPPPPP PPPPxxyx 13160.0544,083665.083 06002.0544.083665.083544.0 42745.02544.02665.05432 = = =对于结点2:2N2-1P2yP2x450 PPNx 6045
9、0.02221 =对于结点3:P3yN1-33PPNy 544.0331 =对于结点4:4N1-4P4yP4x60PPNx 12005.02441 =对于结点5:5N1-5P5yP5x30PPN x 15195.032551 = 15195.012005.0544.060450.051413121 PNN14 232PPl(c)(c)解:以结点4为原心,建立如图所示的总体坐标系。结点力和结点位移列阵。 Tyxyxyxyx PPPPP 44332211 ,= Tvuvuvuvu 4,4332211 ,=建立元素刚度矩阵。杆元4-1,长度为,1sin,0cos,90, = l= 1010 0000
10、 1010 000014 lEAK同理:2314 =KK杆元1-2,长度为.0sin,1cos,0,3 = l= 0000 0101 0000 0101321 lEAK同理:3421 =KK杆元4-2,长度为.21sin,23cos,30,2 = l = 1313 3333 1313 3333824 lEAK建立总体刚度矩阵,并删行删列后: += 422898183 818183 8383318302 vvulEAP = 329.0671.1745.0422 EAPlvvu PPPPP yxyx 671.1,0,329.0,43013.0 3311 =对于结点1:P1yN1-41N1-2 P1
11、xPPNPPN yx 329.0,43013.0 141121 = 对于结点3:P3yN2-33N4-2 P3xPPNPN yx 671.1,0 332334 = 对于结点4:N2-44N4-3 P4x30N1-4PNN 658.024142 = 658.0671.1329.00430.02432413421 PNNN2314Pl(d)(d)解:利用对称性化简,其结构为:xy2 31P/2选取如图所示的总坐标系。结点力与结点位移列阵。 TTxyxx vuvuvu PPPPP 332211 ,322,1 , 0,2=建立元素刚度矩阵。杆元2-1,长度为.2sin,2cos,315, = l =
12、1111 1111 1111 1111212 lEAK杆元2-3,长度为.2sin,2cos,45, = l = 1111 1111 1111 1111232 lEAK杆元1-3,长度为.1sin,0cos,90,2 = l13 00000101200000101EAK l = 建立总体刚度矩阵,并删行删列之后:131 112 2221 110 2 2P vEAl v + = + 13 22212vPlEAv = 以下计算可能有错PPPxx 1423,142413 +=对于结点3:3450 P3xN2-3N1-3PNNN PPNPN xx 724,02 7122,02 313231 33233
13、2 =+ = 对于结点1:1 P1xN1-3N1-2 P/2PNPNx 5.0,02 21121 =+ 利用对称性知,41214332 , = NNNN .= 5.0207.0293.0207.05.04143313221 PNNN5-3如图所示刚架结构,在点5作用有刚架平面内的集中力矩M,用位移法求结点5处的转角5.M2 3145解:建立如图所示的总体坐标系。x1432 5M结点力与结点位移列阵。 T Tvuvuvuvuvu MQNMQNMQNMQNMQNP 555444333222111 555444333222111 , , =建立总刚度矩阵,55444333222111 , vuvuv
14、uvuvu 均为0.= + MvulEJlEAlEJlEAlEJ 001600 02240 00224 55533 故删行删列之后,EJMl MlEJlEJi 161645 540= = 5-4求如图所示桁架结构的位移,已知杆2-3及杆1-3的长度为l,各杆的截面刚度为EA,斜支座和水平倾角为45,左右对称。P12 3 4解:以2为原点,建立如图所示的总体坐标系。P xy 123 4结点力和结点位移列阵。 T Tyxyxyxyx vuvuvuvu PPPPP 44332211 44332211 , ,=建立元素刚度矩阵。杆元2-1.长度为.2,2,45,2 = l = 111 111 111 111212 lEAK杆元2-3,长度为.0,1,0, = l = 0000 0101 0000 010132 lEAK同理:4332 =KK杆元3-1,长度为.1,0,90, = l= 1010 0000 1010 000013 lEAK杆元4-1,长度为.2,2,135,2 = = 1111 1111 1111 1111214 lEAK建立总体刚度矩阵,并删行删列之后: += 33111010 0200 102110 00021000 vuvulEAP44223311 ,12020 vuvuEAPlvuvu =