收藏 分享(赏)

用积分法求梁的变形.ppt

上传人:精品资料 文档编号:10440853 上传时间:2019-11-12 格式:PPT 页数:14 大小:724.50KB
下载 相关 举报
用积分法求梁的变形.ppt_第1页
第1页 / 共14页
用积分法求梁的变形.ppt_第2页
第2页 / 共14页
用积分法求梁的变形.ppt_第3页
第3页 / 共14页
用积分法求梁的变形.ppt_第4页
第4页 / 共14页
用积分法求梁的变形.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、6-8-2 梁的挠曲线近似微分方程及积分,梁挠曲线近似微分方程,在小变形情况下,任一截面的转角等于挠曲线在该截面处的切线斜率。,通过积分求弯曲位移的特征:,1、适用于细长梁在线弹性范围内、小变形情况下的对称弯曲。,2、积分应遍及全梁。在梁的弯矩方程或弯曲刚度不连续处,其挠曲线的近似 微分方程应分段列出,并相应地分段积分。,3、积分常数由位移边界条件确定。,积分常数C1、C2由边界条件确定,求图所示悬臂梁A端的挠度与转角。,边界条件,求图所示悬臂梁B端的挠度与转角。,边界条件,求图示简支梁在集中荷载F的作用下(F力在右半跨)的最大挠度。,AC段,CB段,求图示简支梁在集中荷载F的作用下(F力在右

2、半跨)的最大挠度。,最大转角,力靠近哪个支座,哪边的转角最大。,最大挠度,令x=a,转角为零的点在AC段,一般认为梁的最大挠度就发生在跨中,画出挠曲线大致形状。图中C为中间铰。,两根梁由中间铰连接,挠曲线在中间铰处,挠度连续,但转角不连续。,用积分法求图示各梁挠曲线方程时,试问下列各梁的挠曲线近似微分方程应分几段;将分别出现几个积分常数,并写出其确定积分常数的边界条件,挠曲线方程应分两段AB,BC.,共有四个积分常数,边界条件,连续条件,用积分法求图示各梁挠曲线方程时,试问下列各梁的挠曲线近似微分方程应分几段;将分别出现几个积分常数,并写出其确定积分常数的边界条件,挠曲线方程应分两段AB,BC

3、.,共有四个积分常数,边界条件,连续条件,用积分法求图示各梁挠曲线方程时,试问下列各梁的挠曲线近似微分方程应分几段;将分别出现几个积分常数,并写出其确定积分常数的边界条件,挠曲线方程应分两段AB,BC.,共有四个积分常数,边界条件,连续条件,全梁仅一个挠曲线方程,共有两个积分常数,边界条件,用积分法求图示各梁挠曲线方程时,试问下列各梁的挠曲线近似微分方程应分几段;将分别出现几个积分常数,并写出其确定积分常数的边界条件,用积分法求图示各梁挠曲线方程时,试问在列各梁的挠曲线近似微分方程时应分几段;将分别出现几个积分常数,并写出其确定积分常数的边界条件,挠曲线方程应分两段AB,BC.,共有四个积分常数,边界条件,连续条件,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报