1、电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 1 页备注:(1) 、按照要求独立完成实验内容。 (2) 、实验结束后,把电子版实验报告按要求格式改名(例:09 号_张三_实验七.doc)后,实验室统一刻盘留档。实验三 零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。 二、实验原理如果知道信号的 Z 变换以及系统的系统函数 H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率 从 0
2、 变化到 2 时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐; 零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。根据这些规律可以定性画出频率响应的幅度特性。 峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ej/4,峰值频率近似为 /4,极点愈靠近单位圆,估计法结果愈准确。 本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、 零点分布的几何分析法分析频率响应,实验时需要将 z=ej 代入信号的 Z 变换和系统
3、函数中,再在 02 之间,等间隔选择若干点,并计算它的频率响应。实 验 名 称 专业、年级 学 号 姓 名零极点分布对系统频率响应的影响以下内容由实验指导教师填写(实验内容请以批注的形式批阅)实验项目完成情况 实验项目成绩 指导教师 时 间年 月 日电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 2 页三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1)假设 a=0.7, 0.8, 0.9 , 分别在三种情况下分析系统的
4、频率特性,并打印幅度特性曲线。a=0.7代码:B=1;a=0.7A=1,-a;subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im);title(y(n)=x(n)-ay(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);
5、grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 3 页-5 0 5-101、 、 Re、Imy(n)=x(n)-ay(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、
6、a=0.8代码:B=1;a=0.8A=1,-a;subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im);title(y(n)=x(n)-ay(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);grid on;axis(-0
7、.1,2.1,-3,3);xlabel(omega/pi);电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 4 页ylabel(phi(omega);title();图像:-6 -4 -2 0 2 4 6-101、 、 Re、Imy(n)=x(n)-ay(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、a=0.9
8、代码:B=1;a=0.9A=1,-a;subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im);title(y(n)=x(n)-ay(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011
9、 第 5 页plot(w/pi,angle(H),linewidth,2);grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:-5 0 5-101、Re、Imy(n)=x(n)-ay(n-1)、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、分析:由 y(n)=x(n)+ay(n-1)可知:Hz=Bz/Az=1/(1-az(-1)系统极点 z=a,零点 z=0,
10、当 B 点从 w=0 逆时针旋转时,在 w=0 点,由于极点向量长度最短,形成波峰,并且当 a 越大,极点越接近单位圆,峰值愈高愈尖锐;在 w=pi 点形成波谷;z=0 处零点不影响幅频响应。 2. 假设系统用下面差分方程描述: y(n) = x(n) +ax(n-1)假设 a=0.7, 0.8, 0.9 , 分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。a=0.7代码:A=1;a=0.7B=1,a;subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im);电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术
11、教研室 2011 第 6 页title(y(n)=x(n)-ax(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:
12、-6 -4 -2 0 2 4 6-101、 、 Re、Imy(n)=x(n)-ax(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、a=0.8代码:A=1;a=0.8B=1,a;subplot(3,1,3);zplane(B,A);电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 7 页xlabel(Re);yla
13、bel(Im);title(y(n)=x(n)-ax(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:-6 -4
14、-2 0 2 4 6-101、 、 Re、Imy(n)=x(n)-ax(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、a=0.9代码:A=1;a=0.9B=1,a;电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 8 页subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im
15、);title(y(n)=x(n)-ax(n-1);grid onH,w=freqz(B,A,whole);subplot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,6);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:-6 -4 -2 0 2
16、 4 6-101、 、 Re、Imy(n)=x(n)-ax(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 205/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、分析:由 y(n)=x(n)+ax(n-1)可知:Hz=Bz/Az= (1-az(-1) /1系统极点 z=0,零点 z=a,当 B 点从 w=0 逆时针旋转时,在 w=0 点,由于零点向量长度电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_E
17、IE 电子技术教研室 2011 第 9 页最长,形成波峰:在 w=pi 点形成波谷;z=a 处极点不影响相频响应。3. 假设系统函数用下式描述: y(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x(n-1)试分析它的频率特性,要求打印其幅度特性曲线,并求出峰值频率和谷值频率。代码:A=1,-1.273,0.81;B=1,1;subplot(3,1,3);zplane(B,A);xlabel(Re);ylabel(Im);title(y(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x(n-1);grid onH,w=freqz(B,A,whole);subpl
18、ot(3,1,2);plot(w/pi,abs(H),linewidth,2);grid on;xlabel(omega/pi);ylabel(|H(ejomega)|);title();axis(0,2,0,20);subplot(3,1,1);plot(w/pi,angle(H),linewidth,2);grid on;axis(-0.1,2.1,-3,3);xlabel(omega/pi);ylabel(phi(omega);title();图像:电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 10 页-6 -4 -2 0
19、2 4 6-101、 、 Re、Imy(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x(n-1)、 、 、 、 、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 201020/|H(ej)|、 、 、 、 、 、0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-202/()、 、 、 、 、 、分析:由 y(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x(n-1)可知:Hz=Bz/Az=(1+z(-1)/(1-1.273 z(-1)+0.81 z(-2)系统极点 z1=0.79+j0.62
20、*1.62(-2),z2=0.79-j0.62*1.62(-2)零点 z1=-1,z2=0 当 B 点从w=0 逆时针旋转时,当旋转到接近极点 z1=0.79+j0.62*1.62(-2)是极点向量长度最短,幅度特性出现峰值。当转到 w=pi 点形成波谷;z=a 处零点不影响幅频响应。当旋转到接近极点z2=0.79-j0.62*1.62(-2)是极点向量长度再次最短,幅度特性再次出现峰值。四、总结1、将实验结果与理论结果进行对比。从图形可得出零极点分布,根据相频响应幅度图和幅频响应幅度图可以得出零极点对幅度特性的影响。实验结果与理论结果符合。2、总结零、极点分布对频率响应的影响。当旋转点转到极点附近时,幅度特性出现峰值,并且极点越靠近单位圆,峰值越尖锐。如果极点在单位圆上,系统不稳定。当旋转点转到零点附近时,幅度特性出现谷值,并且零点越靠近单位圆,谷值越接近零,零点在单位圆上时,谷值为零。所以:极点位置主要影响频响的峰值位置及尖锐程度,零点主要影响频响的谷值位置及形状电子与信息工程系 数字信号处理实验报告AK_EIE AK_EIE AK_EIE 电子技术教研室 2011 第 11 页完